• Chinese Journal of Lasers
  • Vol. 44, Issue 6, 602010 (2017)
Liu Zhengwu1、2、*, Cheng Xu1、2, Li Jia1、2, and Wang Huaming1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/cjl201744.0602010 Cite this Article Set citation alerts
    Liu Zhengwu, Cheng Xu, Li Jia, Wang Huaming. Heat-Processing Technology for Laser Additive Manufacturing of 05Cr15Ni5Cu4Nb Precipitation-Hardening Stainless Steels[J]. Chinese Journal of Lasers, 2017, 44(6): 602010 Copy Citation Text show less
    References

    [1] Laurent C, Frederic D G, Marion D, et al. Evolution of the microstructure of a 15-5PH martensitic stainless steel during precipitation hardening heat treatment[J]. Mater Design, 2016, 107: 416-425.

    [2] Weinberger T. Microstructural and mechanical characterisation of friction stir welded 15-5PH steel[J]. Science & Technology of Welding & Joining, 2009, 14(3): 210-216.

    [3] Bajguirani H R H. The effect of ageing upon the microstructure and mechanical properties of type 15-5 PH stainless steel[J]. Materials Science and Engineering: A, 2002, 338(1-2): 142-159.

    [4] Gan Yong, Tian Zhiling, Dong Han, et al. China materials engineering canon: Volume 3 iron and steel materials[M]. Beijing: Chemical Industry Press, 2006: 1179.

    [5] Lippold J C, Kotecki D J. Welding metallurgy and weldability of stainless steeels[M]. NewYork: Wiley-Interscience, 2005: 63-67.

    [6] Li J, Wang H M, Tang H B. Effect of heat treatment on microstructure and mechanical properties of laser melting deposited Ni-base superalloy Rene′41[J]. Materials Science and Engineering: A, 2012, 550: 97-102.

    [7] Ran X Z, Liu D, Li A, et al. Microstructure characterization and mechanical behavior of laser additive manufactured ultrahigh-strength AerMet100 steel[J]. Materials Science and Engineering: A, 2016, 663: 69-77.

    [8] Zhu Y Y, Liu D, Tian X J, et al. Characterization of microstructure and mechanical properties of laser melting deposited Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy[J]. Mater Design, 2014, 56: 445-453.

    [9] Liu Y, Li A, Cheng X, et al. Effects of heat treatment on microstructure and tensile properties of laser melting deposited AISI 431 martensitic stainless steel[J]. Materials Science and Engineering: A, 2016, 666: 27-33.

    [10] Wang T, Zhu Y Y, Zhang S Q, et al. Grain morphology evolution behavior of titanium alloy components during laser melting deposition additive manufacturing[J]. Journal of Alloys and Compounds, 2015, 632: 505-513.

    [11] Wang Zhihui, Wang Huaming, Liu Dong. Microstructure and mechanical properties of AF1410 ultra-high strength steel using laser additive manufacture technique[J]. Chinese J Lasers, 2016, 43(4): 0403001.

    [12] Gumann M, Bezenon C, Canalis P, et al. Single-crystal laser deposition of superalloys: Processing microstructure maps[J]. Acta Mater, 2001, 49(6): 1051-1062.

    [13] Wang Y D, Tang H B, Fang Y L, et al. Microstructure and mechanical properties of laser melting deposited 1Cr12Ni2WMoVNb steel[J]. Materials Science and Engineering: A, 2010, 527(18-19): 4804-4809.

    [14] Chen Yongcheng, Zhang Shuquan, Tian Xiangjun, et al. Microstructure and microhardness of 4045 aluminum alloy fabricated by laser melting deposition[J]. Chinese J Lasers, 2015, 42(3): 0303008.

    [15] Chen Bo, Shao Bing, Liu Dong, et al. Effect of heat treatment on microstructure and mechanical properties of laser melting deposited TC17 titanium alloy[J]. Chinese J Lasers, 2014, 41(4): 0403001.

    [16] Hua X J, Huang J H, Nie L, et al. Effect of aging temperature on microstructure and corrosion behavior of 15-5PH precipitation hardened stainless steel[J]. Journal of Chinese Society for Corrosion and Protection, 2014, 34(2): 131-137.

    [17] Peng X, Zhou X, Hua X, et al. Effect of aging on hardening behavior of 15-5 PH stainless steel[J]. Journal of Iron and Steel Research International, 2015, 22(7): 607-614.

    [18] Yu Qiang, Fan Yunying, Liu Zhenbao, et al. Effects of aging on microstructure and mechanical properties of 15-5PH precipitation hardened stainless steel[J]. Heat Treatment of Metals, 2013, 38(9): 16-21.

    [19] Qiu Zhen′an, Wang Haitao, Li Jiliang, et al. Effects of heat treatment on microstructure and mechanical properties of 15-5PH stainless steel[J]. Heat Treatment of Metals, 2014, 39(5): 77-81.

    [20] Pei Haixiang, Wang Xitao, Wang Lixin, et al. Effect of ageing treatment on structure and mechanical properties of precipitation-hardening martensite stainless steel 15-5PH[J].Special Steel, 2012, 33(5): 47-48.

    [21] Morito S, Huang X, Furuhara T, et al. The morphology and crystallography of lath martensite in alloy steels[J]. Acta Mater, 2006, 54(19): 5323-5331.

    [22] Habibi H R. Atomic structure of the Cu precipitates in two stages hardening in maraging steel[J]. Materials Letters, 2005, 59(14-15): 1824-1827.

    [23] Gan Y, Tian Z L, Dong H, et al. China materials engineering canon[M]. Beijing: Chemical Industry Press, 2005: 665.

    [24] Morito S, Yoshida H, Maki T, et al. Effect of block size on the strength of lath martensite in low carbon steels[J]. Materials Science and Engineering: A, 2006, 438-440: 237-240.

    Liu Zhengwu, Cheng Xu, Li Jia, Wang Huaming. Heat-Processing Technology for Laser Additive Manufacturing of 05Cr15Ni5Cu4Nb Precipitation-Hardening Stainless Steels[J]. Chinese Journal of Lasers, 2017, 44(6): 602010
    Download Citation