• Optoelectronics Letters
  • Vol. 18, Issue 2, 72 (2022)
Junjie WANG, Deli CHEN, Zhan WANG, Qi XUE*, and Xiaohong SUN
Author Affiliations
  • Henan Key Laboratory of Laser and Opto-electric Information Technology, School of Information Engineering, Zhengzhou University, Zhengzhou 450001, China
  • show less
    DOI: 10.1007/s11801-022-1095-9 Cite this Article
    WANG Junjie, CHEN Deli, WANG Zhan, XUE Qi, SUN Xiaohong. Focusing enhanced broadband metalens via height optimization[J]. Optoelectronics Letters, 2022, 18(2): 72 Copy Citation Text show less
    References

    [1] PATRICE G, FEDERICO C, FRANCESCO A, et al. Recent advances in planar optics:from plasmonic to dielectric metasurfaces[J]. Optica, 2017, 4(1):139-152.

    [2] YU N F, FRANCESCO A, PATRICE G, et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces[J]. Nano letters, 2012, 12(12):6328-6333.

    [3] YU N F, FEDERICO C. Flat optics with designed metasurfaces[J]. Nature materials, 2014, 13(2):139-150.

    [4] YU N F, PAREICE G, MIKHAIL A, et al. Light propagation with phase discontinuities:generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337.

    [5] NINA M, WILLIAM L B, LAN R H, et al. Plasmonic meta-atoms and metasurfaces[J]. Nature photonics, 2014, 8(12):889-898.

    [6] SAMAN J, ZUBIN J. All-dielectric metamaterials[J]. Nature nanotechnology, 2016, 11(1):23-36.

    [7] AMIR A, YU H, MAHMOOD B, et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature nanotechnology, 2015, 10(11): 937-943.

    [8] MOHAMMADREZA K, CHEN W T, ROBERT C D, et al. Metalenses at visible wavelengths:diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290):1190-1194.

    [9] WANG S M, CHEN D L, SUN X H, et al. GaP-based high-efficiency elliptical cylinder metasurface in visible light[J]. Chinese physics letters, 2020, 37(5):057801.

    [10] FRANCESCO A, MIKHSIL A K, PATRICE G, et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation[J]. Science, 2015, 347(6228) : 1342-1345.

    [11] WANG S M, CHEN M K, CHEN B H, et al. A broadband achromatic metalens in the visible[J]. Nature nanotechnology, 2018, 13(3):227-232.

    [12] CHEN D L, QI Y L, SUN X H, et al. Design of dielectric deflecting metasurface and metalens in the visible-light range[J]. Optical engineering, 2021, 60(3):035104.

    [13] PAN W, WANG X Y, CHEN Q, et al. Design of multi-channel terahertz beam splitter based on Z-shaped metasurface[J]. 2020, 16(6):437-440.

    [14] CHEN D L, WANG J J, SUN X H, et al. The bifocal metalenses for independent focusing of orthogonally circularly polarized light[J]. Journal of physics D: applied physics, 2021, 54(7):075103.

    [15] CHEN D L, WANG J J, SUN X H, et al. Polarizationinsensitive dielectric metalenses with different numerical apertures and off-axis focusing characteristics[J]. Journal of the optical sociery of America B, 2020, 37(12):3588.

    [16] WANG S M, CHEN D L, SUN X H, et al. The investigation of height-dependent meta-lens and focusing properties[J]. Optics communications, 2019, 460(1): 125129.

    [17] LIU Y, YANG H H, LU Y L, et al. A whispering gallery mode strain sensor based on microtube resonator[J]. Optoelectronics letters, 2021, 17(4):199-204.

    [18] REZA K, SHI Z J, CHEN W T, et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion[J]. Nano letters, 2017, 17(3):1819-1824.

    [19] CHEN W T, SHI Z J, FEDERICO C, et al. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nature nanotechnology, 2018, 13(3):220-226.

    WANG Junjie, CHEN Deli, WANG Zhan, XUE Qi, SUN Xiaohong. Focusing enhanced broadband metalens via height optimization[J]. Optoelectronics Letters, 2022, 18(2): 72
    Download Citation