[1] KRATSCHMER W, LAMB L D, FOSTIROPOULOS K, et al. Solid C60: A new form of carbon[J], Nature, 1990, 347(6291): 354-358.
[2] LIJIMA S, ICHIHASHI T. Single-shell carbon nanotubes of 1 nm diameter[J]. Nature, 1993, 363(6430): 603-605.
[3] GEIM A K, NOVOSELOV K S, The rise of graphene[J]. Nat Mater, 2009, 6: 11-19.
[4] ZHANG S S, LI Z H, LUO K, et al. Discovery of carbon-based strongest and hardest amorphous material[J]. Natl Sci Rev, 2021, 9(1): nwab140.
[5] ZHANG S S , WU Y J, LUO K, et al. Narrow-gap, semiconducting, superhard amorphous carbon with high toughness, derived from C60 fullerene[J]. Cell Rep Phys Sci, 2021, 2: 100575.
[6] GARION C, Mechanical properties for reliability analysis of structures in glassy carbon[J]. World J Mech, 2014, 4(3): 44181.
[7] ZHAO Z S, WANG E F, YAN H, et al. Nanoarchitectured materials composed of fullerene-like spheroids and disordered graphene layers with tunable mechanical properties[J]. Nat Commun, 2015, 6(1): 1-10.
[8] HARRIS P J. New perspectives on the structure of graphitic carbons[J]. Crit Rev Solid State , 2005, 30(4): 235-253.
[9] WU Y J, ZHANG S S, LIANG Z T, et al. Strong amorphous carbon prepared by spark-plasma sintering C60[J]. J Am Ceram Soc, 2021, 104(4): 1655-1660.
[10] HU M, HE J L, ZHAO Z S, et al. Compressed glassy carbon: An ultrastrong and elastic interpenetrating graphene network[J]. Sci Adv, 2017, 3(6): e1603213.
[11] HU M, ZHANG S S, LIU B, et al. Heat-treated glassy carbon under pressure exhibiting superior hardness, strength and elasticity[J], J Materiomics, 2021, 7(1): 177-184.
[12] RWA J O, ANDRIENKO I, PENG J L, et al. Thermally induced sp2 clustering in tetrahedral amorphous carbon (ta-C) films[J]. J Appl Phys, 2004, 96(11): 6286-6297.
[13] HOWE P J. Properties of graphite[J]. J Am Ceram Soc, 1952, 35(11): 275-283.
[14] RAN J J, LIN K P, YANG H T, et al. A new family of carbon materials with exceptional mechanical properties[J]. Appl Phys A, 2018, 124(3): 1-7.
[15] TOJO J. Production process and major applications for isotropic graphite[J]. TANSO, 2008, 234: 234-243.
[16] SHEN K, HUANG A H, HU K, et al. Advantages of natural microcrystalline graphite filler over petroleum coke in isotropic graphite preparation[J]. Carbon, 2015, 90: 197-206.
[17] TOYO TANSO, Property Data of Isotropic Graphite. 2021. Available from: http://www.toyotanso.com.tw/news_detail.php.
[18] LIN K P, FANG H L, GAO A, et al. Nanoburl Graphites[J]. Adv Mater, 2021, 33(17): 2007513.
[19] WANG M J, GRAY C A, REZNEK S A, et al. Carbon black[J]. Kirk-Othmer Encyclopedia of Chemical Technology, 2000, 4: 762-768.
[20] OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. J Mater Res, 1992, 7(6): 1564-1583.
[21] POPOVA A N. Crystallographic analysis of graphite by X-ray diffraction[J]. Coke Chem, 2017, 60(9): 361-365.
[22] KLUG H P, ALEXANDER L E. X-ray diffraction procedures: for polycrystalline and amorphous materials[M]. John Wiley & Sons, Inc, 1974.
[23] MANOJ B, KUNJOMANA A G. Study of stacking structure of amorphous carbon by X-ray diffraction technique[J]. Int J Electrochem, 2012, 7(4): 3127-3134.
[24] TUINSTRA F, KOENIG J L. Raman spectrum of graphite[J]. J Chem Phys, 1970, 53(3): 1126-1130.
[25] FERRARI A C, ROBERTSON J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Phys Rev B, 2000, 61(20): 14095.
[26] SZE S K, SIDDIQUE N, SLOAN J J, et al. Raman spectroscopic characterization of carbonaceous aerosols[J]. Atmos Environ, 2001, 35(3): 561-568.
[27] GUPTA A, CHEN G, JOSHI P, et al. Raman scattering from high-frequency phonons in supported n-graphene layer films[J]. Nano lett, 2006, 6(12): 2667-2673.