• Advanced Fiber Materials
  • Vol. 6, Issue 6, 00450 (2024)
Jun Hyun Park1,†, Jang Hwan Kim8,†, Su Eon Lee1,†, Hyokyeong Kim3,†..., Heo Yeon Lim4, Ji Sung Park9,10, Taeyeong Yun5, Jinyong Lee6, Simon Kim1, Ho Jun Jin1, Kyeong Jun Park1,†, Heemin Kang7, Hoe Joon Kim1, Hyeong Min Jin9,10, Jiwoong Kim3,6,*, Sang Ouk Kim8,** and Bong Hoon Kim1,***|Show fewer author(s)
Author Affiliations
  • 1Department of Robotics and Mechatronics Engineering, DGIST, Daegu 42988, Republic of Korea
  • 3Department of Materials Science and Engineering, Soongsil University, Seoul 06978, Republic of Korea
  • 4Department of Organic Materials and Fiber Engineering, Soongsil University, Seoul 06978, Republic of Korea
  • 5Nano Convergence Technology Research Center, Korea Electronics Technology Institute (KETI), Gyeonggi-do 13509, Republic of Korea
  • 6Department of Green Chemistry and Materials Engineering, Soongsil University, Seoul 06978, Republic of Korea
  • 7Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
  • 8Department of Materials Science and Engineering, National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, KAIST Institute for Nanocentury, KAIST, Daejeon 34141, Republic of Korea
  • 9Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
  • 10Department of Materials Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
  • show less
    DOI: 10.1007/s42765-024-00450-4 Cite this Article
    Jun Hyun Park, Jang Hwan Kim, Su Eon Lee, Hyokyeong Kim, Heo Yeon Lim, Ji Sung Park, Taeyeong Yun, Jinyong Lee, Simon Kim, Ho Jun Jin, Kyeong Jun Park, Heemin Kang, Hoe Joon Kim, Hyeong Min Jin, Jiwoong Kim, Sang Ouk Kim, Bong Hoon Kim. 2D MoS2 Helical Liquid Crystalline Fibers for Multifunctional Wearable Sensors[J]. Advanced Fiber Materials, 2024, 6(6): 00450 Copy Citation Text show less
    References

    [1] Zeng W, Shu L, Li Q, Chen S, Wang F, Tao XM. Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv Mater. 2014;26:5310.

    [2] Xu Z, Gao C. Graphene fiber: a new trend in carbon fibers. Mater Today. 2015;18:480.

    [3] Eom W, Shin H, Ambade RB, Lee SH, Lee KH, Kang DJ, Han TH. Large-scale wet-spinning of highly electroconductive MXene fibers. Nat Commun. 2020;11:2825.

    [4] Wang Y, Yokota T, Someya T. Electrospun nanofiber-based soft electronics. NPG Asia Mater. 2021;13:22.

    [5] Di J, Zhang X, Yong Z, Zhang Y, Li D, Li R, Li Q. Carbon-nanotube fibers for wearable devices and smart textiles. Adv Mater. 2016;28:10529.

    [6] Lee HB, Veerasubramani GK, Lee KS, Lee H, Han TH. Joule heating-induced faradaic electrode-decorated graphene fibers for flexible fiber-shaped hybrid supercapacitor with high volumetric energy density. Carbon. 2022;198:252.

    [7] Hwang HS, Jung HJ, Kim JG, Jeong HS, Lee WJ, Kim SO. Artificial helical screws of 2D materials with Archimedean spiral arrangement. Adv Funct Mater. 2023;33:2212997.

    [8] Kelly FM, Johnston JH. Colored and functional silver nanoparticle−wool fiber composites. ACS Appl Mater Interfaces. 2011;3:1083.

    [9] Cheng Y, Wang R, Sun J, Gao L. A stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion. Adv Mater. 2015;27:7365.

    [10] Zhao Y, Li XG, Zhou X, Zhang YN. Review on the graphene based optical fiber chemical and biological sensors. Sens Actuators B Chem. 2016;231:324.

    [11] Ma Y, Bai D, Hu X, Ren N, Gao W, Chen S, Chen H, Lu Y, Li J, Bai Y. Robust and antibacterial polymer/mechanically exfoliated graphene nanocomposite fibers for biomedical applications. ACS Appl Mater Interfaces. 2018;10:3002.

    [12] Zhao X, Zhou Y, Xu J, Chen G, Fang Y, Tat T, Xiao X, Song Y, Li S, Chen J. Soft fibers with magnetoelasticity for wearable electronics. Nat Commun. 2021;12:6755.

    [13] Geim AK. Graphene: status and prospects. Science. 2009;324:1530.

    [14] Li X, Zhu H. Two-dimensional MoS2: properties, preparation, and applications. J Materiomics. 2015;1:33.

    [15] Caldwell JD, Aharonovich I, Cassabois G, Edgar JH, Gil B, Basov DN. Photonics with hexagonal boron nitride. Nat Rev Mater. 2019;4:552.

    [16] Gogotsi Y, Anasori B. The rise of MXenes. ACS Nano. 2019;13:8491.

    [17] Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari AC, Ruoff RS, Pellegrini V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science. 2015;347:1246501.

    [18] Kim JE, Han TH, Lee SH, Kim JY, Ahn CW, Yun JM, Kim SO. Graphene oxide liquid crystals. Angew Chem Int Ed. 2011;50:3043.

    [19] Xia Y, Mathis TS, Zhao M-Q, Anasori B, Dang A, Zhou Z, Cho H, Gogotsi Y, Yang S. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature. 2018;557:409.

    [20] Zhang J, Uzun S, Seyedin S, Lynch PA, Akuzum B, Wang Z, Qin S, Alhabeb M, Shuck CE, Lei W, Kumbur EC, Yang W, Wang X, Dion G, Razal JM, Gogotsi Y. Additive-free MXene liquid crystals and fibers. ACS Cent Sci. 2020;6:254.

    [21] Narayan R, Kim JE, Kim JY, Lee KE, Kim SO. Graphene oxide liquid crystals: discovery, evolution and applications. Adv Mater. 2016;28:3045.

    [22] Yang Q, Xu Z, Fang B, Huang T, Cai S, Chen H, Liu Y, Gopalsamy K, Gao W, Gao C. MXene/graphene hybrid fibers for high performance flexible supercapacitors. J Mater Chem. 2017;5:22113.

    [23] Fang B, Chang D, Xu Z, Gao C. A review on graphene fibers: expectations, advances, and prospects. Adv Mater. 2020;32:1902664.

    [24] Kim IH, Yun T, Kim JE, Yu H, Sasikala SP, Lee KE, Koo SH, Hwang H, Jung HJ, Park JY, Jeong HS, Kim SO. Mussel-inspired defect engineering of graphene liquid crystalline fibers for synergistic enhancement of mechanical strength and electrical conductivity. Adv Mater. 2018;30:1803267.

    [25] Chen S, Kim S, Chen W, Yuan J, Bashir R, Lou J, van der Zande AM, King WP. Monolayer MoS2 nanoribbon transistors fabricated by scanning probe lithography. Nano Lett. 2019;19:2092.

    [26] Kotekar-Patil D, Deng J, Wong SL, Lau CS, Goh KEJ. Single layer MoS2 nanoribbon field effect transistor. Appl Phys Lett. 2019;114: 013508.

    [27] Voiry D, Mohite A, Chhowalla M. Phase engineering of transition metal dichalcogenides. Chem Soc Rev. 2015;44:2702.

    [28] Conley HJ, Wang B, Ziegler JI, Haglund RF Jr, Pantelides ST, Bolotin KI. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 2013;13:3626.

    [29] Ellis JK, Lucero MJ, Scuseria GE. The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory. Appl Phys Lett. 2011;99: 261908.

    [30] Lu CP, Li G, Mao J, Wang LM, Andrei EY. Bandgap, mid-gap states, and gating effects in MoS2. Nano Lett. 2014;14:4628.

    [31] Li J, Naiini MM, Vaziri S, Lemme MC, Östling M. Inkjet Printing of MoS2. Adv Funct Mater. 2014;24:6524.

    [32] Wibmer L, Lages S, Unruh T, Guldi DM. Excitons and trions in one-photon- and two-photon-excited MoS2: a study in dispersions. Adv Mater. 2018;30:1706702.

    [33] Kawecki B, Podgórski J. Numerical results quality in dependence on Abaqus plane stress elements type in big displacements compression test. Appl Comput Sci. 2017;13:56.

    [34] Bertolazzi S, Brivio J, Kis A. Stretching and breaking of ultrathin MoS2. ACS Nano. 2011;5(12):9703.

    [35] Vukasovic T, Vivanco JF, Celentano D, García-Herrera C. Characterization of the mechanical response of thermoplastic parts fabricated with 3D printing. J Adv Manuf Technol. 2019;104:4207.

    [36] Börgesson L. ABAQUS. In: Stephansson O, Jing L, Tsang C-F, editors. Developments in geotechnical engineering. Elsevier; 1996. p. 565.

    [37] Dai H, Tang M, Huang J, Wang Z. A series of molecule-intercalated MoS2 as anode materials for sodium ion batteries. ACS Appl Mater & Interfaces. 2021;13:10870.

    [38] Gan X, Zhao H, Lei D, Wang P. Improving electrocatalytic activity of 2H-MoS2 nanosheets obtained by liquid phase exfoliation: covalent surface modification versus interlayer interaction. J Catal. 2020;391:424.

    [39] Sun Y, Yin S, Peng R, Liang J, Cong X, Li Y, Li C, Wang B, Lin M-L, Tan P-H, Wan C, Liu K. Abnormal out-of-plane vibrational Raman mode in electrochemically intercalated multilayer MoS2. Nano Lett. 2023;23:5342.

    [40] O’Neill A, Khan U, Coleman JN. Preparation of high concentration dispersions of exfoliated MoS2 with increased flake size. Chem Mater. 2012;24:2414.

    [41] Sanchez EMS, Zavaglia CAC, Felisberti MI. Unsaturated polyester resins: influence of the styrene concentration on the miscibility and mechanical properties. Polymer. 2000;41:765.

    [42] Clarkson CM, El Awad Azrak SM, Chowdhury R, Shuvo SN, Snyder J, Schueneman G, Ortalan V, Youngblood JP. Melt spinning of cellulose nanofibril/polylactic acid (CNF/PLA) composite fibers for high stiffness. ACS Appl Polym Mater. 2019;1:160.

    [43] Gunti R, Ratna Prasad AV, Gupta AVSSKS. Preparation and properties of successive alkali treated completely biodegradable short jute fiber reinforced PLA composites. Polym Compos. 2016;37:2160.

    [44] Santoro M, Shah SR, Walker JL, Mikos AG. Poly(lactic acid) nanofibrous scaffolds for tissue engineering. Adv Drug Deliv Rev. 2016;107:206.

    [45] Chakrabarti B, Liu Y, LaGrone J, Cortez R, Fauci L, du Roure O, Saintillan D, Lindner A. Flexible filaments buckle into helicoidal shapes in strong compressional flows. Nat Phys. 2020;16:689.

    [46] Jung HJ, Padmajan Sasikala S, Lee KE, Hwang HS, Yun T, Kim IH, Koo SH, Jain R, Lee GS, Kang YH, Kim JG, Kim JT, Kim SO. Self-planarization of high-performance graphene liquid crystalline fibers by hydration. ACS Cent Sci. 2020;6:1105.

    [47] Liu S, Wang Y, Ming X, Xu Z, Liu Y, Gao C. High-speed blow spinning of neat graphene fibrous materials. Nano Lett. 2021;21:5116.

    [48] Li H, Zhang Q, Yap CCR, Tay BK, Edwin THT, Olivier A, Baillargeat D. From bulk to monolayer MoS2: evolution of Raman scattering. Adv Funct Mater. 2012;22:1385.

    [49] Plechinger G, Heydrich S, Eroms J, Weiss D, Schüller C, Korn T. Raman spectroscopy of the interlayer shear mode in few-layer MoS2 flakes. Appl Phys Lett. 2012;101.

    [50] Steinhoff A, Kim JH, Jahnke F, Rösner M, Kim DS, Lee C, Han GH, Jeong MS, Wehling TO, Gies C. Efficient excitonic photoluminescence in direct and indirect band gap monolayer MoS2. Nano Lett. 2015;15:6841.

    [51] Kim DW, Ok JM, Jung W-B, Kim J-S, Kim SJ, Choi HO, Kim YH, Jung H-T. Direct observation of molybdenum disulfide, MoS2, domains by using a liquid crystalline texture method. Nano Lett. 2015;15:229.

    [52] Jiang H, Zheng L, Wei Y, Wang X. In-situ investigation of the elastic behavior of two-dimensional MoS2 on flexible substrate by nanoindentation. J Phys D Appl Phys. 2021;54: 504006.

    [53] Barzegar A, Namnabat MS, Niyaee FN, Tabarraei A. Linear and nonlinear buckling analysis of double-layer molybdenum disulfide by finite elements. Finite Elem Anal Des. 2023;218: 103919.

    [54] Li H, Liu S, Li X, Hao R, Wang X, Zhang W, Zheng Z, Feng Q. All-solid, ultra-micro, and ultrasensitive pH sensor by monolayer MoS2-based array field-effect transistors. ACS Appl Nano Mater. 2021;4:8950.

    [55] Timmer B, Olthuis W, Berg A. Ammonia sensors and their applications—a review. Sens Actuators B Chem. 2005;107:666.

    [56] Pandey S, Nanda KK. Au nanocomposite based chemiresistive ammonia sensor for health monitoring. ACS Sens. 2016;1:55.

    [57] Cho B, Hahm MG, Choi M, Yoon J, Kim AR, Lee Y-J, Park S-G, Kwon J-D, Kim CS, Song M, Jeong Y, Nam K-S, Lee S, Yoo TJ, Kang CG, Lee BH, Ko HC, Ajayan PM, Kim D-H. Charge-transfer-based gas sensing using atomic-layer MoS2. Sci Rep. 2015;5:8052.

    [58] Järvinen T, Lorite GS, Peräntie J, Toth G, Saarakkala S, Virtanen VK, Kordas K. WS2 and MoS2 thin film gas sensors with high response to NH3 in air at low temperature. Nanotechnology. 2019;30: 405501.

    [59] Amjadi M, Kyung KU, Park I, Sitti M. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv Funct Mater. 2016;26:1678.

    [60] Wang Y, Wang L, Yang T, Li X, Zang X, Zhu M, Wang K, Wu D, Zhu H. Wearable and highly sensitive graphene strain sensors for human motion monitoring. Adv Funct Mater. 2014;24:4666.

    [61] Petersen KE. Silicon as a mechanical material. Proc IEEE. 1982;70:420.

    [62] McMillen G. Tendril perversion in intrinsically curved rods. J Nonlinear Sci. 2002;12:241.

    [63] Cheng Y, Wang R, Chan KH, Lu X, Sun J, Ho GW. A biomimetic conductive tendril for ultrastretchable and integratable electronics, muscles, and sensors. ACS Nano. 2018;12:3898.

    [64] Woo J, Lee H, Yi C, Lee J, Won C, Oh S, Jekal J, Kwon C, Lee S, Song J, Choi B, Jang K-I, Lee T. Ultrastretchable helical conductive fibers using percolated Ag nanoparticle networks encapsulated by elastic polymers with high durability in omnidirectional deformations for wearable electronics. Adv Funct Mater. 2020;30:1910026.

    [65] Farah S, Anderson DG, Langer R. Physical and mechanical properties of PLA, and their functions in widespread applications—a comprehensive review. Adv Drug Deliv Rev. 2016;107:367.

    Jun Hyun Park, Jang Hwan Kim, Su Eon Lee, Hyokyeong Kim, Heo Yeon Lim, Ji Sung Park, Taeyeong Yun, Jinyong Lee, Simon Kim, Ho Jun Jin, Kyeong Jun Park, Heemin Kang, Hoe Joon Kim, Hyeong Min Jin, Jiwoong Kim, Sang Ouk Kim, Bong Hoon Kim. 2D MoS2 Helical Liquid Crystalline Fibers for Multifunctional Wearable Sensors[J]. Advanced Fiber Materials, 2024, 6(6): 00450
    Download Citation