[1] CHEN L, PANNALA S, NAIR B et al. Experimental and numerical study of a two-stage natural gas combustion pyrolysis reactor for acetylene production: the role of delayed mixing[J]. Proceedings of the Combustion Institute, 37, 5715-5722(2019).
[2] ELREFAES N, BASHA N, NOUNOU M et al. Quantified database for methane dehydroaromatization reaction[J]. ChemCatChem, 14, e202200711(2022).
[3] GAMBO Y, JALIL A A, TRIWAHYONO S et al. Recent advances and future prospect in catalysts for oxidative coupling of methane to ethylene: a review[J]. Journal of Industrial and Engineering Chemistry, 59, 218-229(2018).
[4] YAMADA H, YAMAMOTO T, TAGAWA T et al. Hydrogen production from methane in atmospheric non-equilibrium plasma[J]. Engineering Journal-Thailand, 25, 285-293(2021).
[5] LI A, SONG H, XU X et al. Greener production process of acetylene and calcium diglyceroxide via mechanochemical reaction of CaC2 and glycerol[J]. ACS Sustainable Chemistry & Engineering, 6, 9560-9565(2018).
[6] ZHANG Q, LIU Y F, CHEN T W et al. Simulations of methane partial oxidation by CFD coupled with detailed chemistry at industrial operating conditions[J]. Chemical Engineering Science, 142, 126-136(2016).
[8] LISEC J, SCHAUER N, KOPKA J et al. Gas chromatography mass spectrometry-based metabolite profiling in plants[J]. Nature Protocols, 1, 387-396(2006).
[9] LUPAN O, URSAKI V V, CHAI G et al. Selective hydrogen gas nanosensor using individual ZnO nanowire with fast response at room temperature[J]. Sensors and Actuators B: Chemical, 144, 56-66(2010).
[10] ACIK M, LEE G, MATTEVI C et al. The role of oxygen during thermal reduction of graphene oxide studied by infrared absorption spectroscopy[J]. The Journal of Physical Chemistry C, 115, 19761-19781(2011).
[11] DEREK A L[M]. The Raman effect a unified treatment of the theory of Raman scattering by molecules(2002).
[12] BISCHEL W K, BLACK G. Wavelength dependence of Raman-scattering cross-sections from 200-600 nm[J]. AIP Conference Proceedings, 181-187(1983).
[13] FENNER W R, HYATT H A, KELLAM J M et al. Raman cross section of some simple gases[J]. Journal of the optical Society of America, 63, 73-77(1973).
[14] DING W, WANG Y Y, GAO S F et al. Recent progress in low-loss hollow-core anti-resonant fibers and their applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 26, 4400312(2020).
[15] ZHU C L, HOU S S, HU X L et al. Electrochemical conversion of methane to ethylene in a solid oxide electrolyzer[J]. Nature Communications, 10, 1173(2019).
[16] CURRIE L A. Limits for qualitative detection and quantitative determination[J]. Analytical Chemistry, 40, 586-593(1968).
[17] KNEBL A, DOMES R, YAN D et al. Fiber-enhanced Raman gas spectroscopy for (18)O-(13)C-labeling experiments[J]. Analytical Chemistry, 91, 7562-7569(2019).
[18] RAHN L A, GREENHALGH D A. High-resolution inverse Raman spectroscopy of the V1 band of water vapor[J]. Journal of Molecular Spectroscopy, 119, 11-21(1986).