[1] PANWAR N L, KAUSHIK S C, KOTHARI S. Role of renewable energy source in environmental protection: a review[J]. Renew Sust Energ Rev, 2011, 15(3): 1513-1524.
[2] GUNEY M S, TEPE Y. Classification and assessment of energy storage systems[J]. Renew Sust Energ Rev, 2017, 75: 1187-1197.
[3] GOODMAN J. Researching climate crisis and energy transitions: some issues for ethnography[J]. Energy Res Soc Sci, 2018, 45: 340-347.
[4] DING F, YAKOBSON B I. Challenges in hydrogen adsorptions: from physisorption to chemisorption[J]. Front Phys, 2011, 6(2): 142-150.
[5] YAO L Z, YANG B, CUIH F, et al. Challenges and progresses of energy storage technology and its application in power systems[J]. J Mod Power Syst Clean Energy, 2016, 4(4): 519-528.
[6] ATSUSHI N. Capacitors: operating principles, current market and technical trends[J]. J Powder Sources, 1996, 60(2): 137-147.
[7] HAO X H. A review on the dielectric materials for high energy storage application[J]. J Adv Dielect, 2013, 3(1): 1330001-1330014.
[8] YAO L M, PAN Z B, LIU S H, et al. Significantly enhanced energy density in nanocomposite capacitors combining the TiO2 nanorod array with poly(vinylidene fluoride)[J]. ACS Appl Mater Interf, 2016, 8(39): 26343-26351.
[9] HOU C M, HUANG W C, ZHAO W B, et al. Ultrahigh energy density in SrTiO3 film capacitors [J]. ACS Appl Mater Interf, 2017, 9(24): 20484-20490.
[10] CHU B J, ZHOU X, REN K L, et al. A dielectric polymer with high electric energy and fast discharge speed[J]. Science, 2006, 313(5785): 334-336.
[11] YANG L T, KONG X, LI F, et al. Perovskite lead-free dielectrics for energy storage applications[J]. Prog Mater Sci, 2019, 102: 72-108.
[14] HAO X H, ZHAI J W, KONG L B, et al. A comprehensive review on the progress of lead zirconate-based antiferroelectric materials[J]. Prog Mater Sci, 2014, 63: 1-57.
[16] CHANHAN A, PATEL S, VAISH R, et al. Anti-ferroelectric ceramics for high energy density capacitors[J]. Materials, 2015, 8(12): 8009-8031.
[17] SUN N N, LI Y, ZHANG Q W, et al. Giant energy-storage density and high efficiency achieved in (Bi0.5Na0.5)TiO3-Bi(Ni0.5Zr0.5)O3 thick films with polar nanoregions[J]. J Mater Chem C. 2018, 6(5): 10693-10703.
[18] SUN N N, LI Y, LIU X H, et al. High energy-storage density under low electric field in lead-free relaxor ferroelectric film based on synergistic effect of multiple polar structures[J]. J Power Sources, 2020, 448: 227457.
[20] ZHAO Y, MENG X J, HAO X H. Synergistically achieving ultrahigh energy-storage density and efficiency in linear-like lead-based multilayer ceramic capacitor[J]. Scripta Materialia, 2021, 195: 113723.
[21] SARJEANT W J, CLELLAND I W, PRICE R A. Capacitive component for powder electronics[J]. P IEEE, 2001, 89(6): 846-855.
[22] PALNEEDI H, PEDDIGARI M, HWANG G, et al. High-performance dielectric ceramic films for energy storage capacitors: progress and outlook[J]. Adv Funct Mater, 2018, 28(42): 1-33.
[23] WANG D W, FAN Z M, ZHOU D, et al. Bismuth ferrite-based lead-free ceramics and multilayers with high recoverable energy density[J]. J Mater Chem A, 2018, 6(9): 4133-4144.
[25] PAN H, ZENG Y, SHEN Y, et al. BiFeO3-SrTiO3 thin film as a new lead-free relaxor-ferroelectric capacitor with ultrahigh energy storage performance[J]. J Mater Chem A, 2017, 5(12): 5920-5926.
[26] SHEN B Z, LI Y, SUN N, et al. Enhanced energy-storage performance of an all-inorganic flexible bilayer-like antiferroelectric thin film via using electric field engineering[J]. Nanoscale, 2020, 12(16): 8958-8968.
[27] CHEN X F, ZHANG H L, CAO F, et al. Charge-discharge properties of lead zirconate stannate titanate ceramics[J]. J Appl Phys, 2009, 106(3): 034105.
[28] ZHANG H L, CHEN X F, CAO F, et al. Charge-discharge properties of an antiferroelectric ceramics capacitor under different electric fields[J]. J Am Ceram Soc, 2010, 93(12): 4015-4017.
[29] XU R, XU Z, FENG Y J, et al. Evaluation of discharge energy density of antiferroelectric ceramics for pulse capacitors[J]. Appl Phys Lett, 2016, 109(3): 8958-8968.
[30] XU R, XU Z, FENG Y J, et al. Discharging and energy-releasing properties of Pb0.90La0.04Ba0.04[(Zr0.6Sn0.4)0.85Ti0.15]O3 antiferroelectric ceramics under different electric fields [J]. J Mater Sci: Mater in Electron, 2015, 27(3): 3071-3075.
[31] ZHU L. Exploring strategies for high dielectric constant and low loss polymer dielectrics[J]. J Phys Chem Lett, 2014, 5(21): 3677-3687.
[34] ZHAO L, LIU Q, GAO J, et al. Lead-free antiferroelectric silver niobate tantalate with high energy storage performance[J]. Adv Mater, 2017, 29(31): 701824.
[35] HAO X H, WANG Y, ZHANG L, et al. Composition-dependent dielectric and energy-storage properties of (Pb,La)(Zr,Sn,Ti)O3 antiferroelectric thick films[J]. Appl Phys Lett, 2013, 102(16): 163903.
[36] XIE J Y, YAO M W, GAO W B, et al. Significantly enhanced dielectric constant and energy density in Au/Al2O3 nanocomposite thin films[J]. J Alloy Comp, 2019, 772: 324-331.
[37] SPAHR H, NOWAK C, HIRSCHBERG F, et al. Enhancement of the maximum energy density in atomic layer deposited oxide based thin film capacitors[J]. Appl Phys Lett, 2013, 103(4): 129-176.
[38] PENG Y, YAO M W, YAO X. Interfacial origin of enhanced energy density in SrTiO3-based nanocomposite films[J]. Ceram Inter, 2018, 44(3): 3032-3039.
[39] XIAO S Q, GAO W B, Yao M W, et al. High dielectric constant and energy density achieved in sandwich-structured SrTiO3 nanocomposite thick films by interface modulation[J]. J Mater Chem C, 2019, 7(3): 673-681.
[40] LI M X, YAO M W, GAO W B, et al. Self-enhanced electrical performance and less defective electrode/film structure for Al2O3 capacitor via interfacial anodic oxidation[J]. Electrochimica Acta, 2019, 313: 20-30.
[41] WANG S J, TIAN J, LIU J R, et al. Ultrahigh energy storage density and instantaneous discharge power density in NaO-PbO-Na2O-Nb2O5-SiO2-Al2O3 glass-ceramics[J]. J Mater Chem C, 2018, 6(46): 12608-12614.
[42] CHEN K K, BAI H R, YAN F, et al. Achieving superior energy storage properties and ultrafast discharge speed in environment-friendly niobate-based glass ceramics[J]. ACS Appl Mater Interfaces, 2021, 13(3): 4236-4243.
[43] LIU S H, SHEN B, HAO H S, et al. Glass-ceramic dielectric materials with high energy density and ultra-fast discharge speed for high power energy storage applications[J]. J Mater Chem C, 2019, 7(48): 15118-15135.
[44] JIANG T, CHEN K K, SHEN B, et al. Enhanced energy-storage density in sodium-barium-niobate based glass-ceramics realized by doping CaF2 nucleating agent[J]. J Mater Sci: Mater in Electron, 2019, 30(16): 15277-15284.
[45] LIU J H, WANG H T, SHEN B, et al. Significantly enhanced energy-storage density in the strontium barium niobate-based/titanate-based glass-ceramics[J]. J Am Ceram Soc, 2016, 100(2): 506-510.
[46] LIU J R, YANG K, ZHAI J W, et al. Effects of crystallization temperature on phase evolution and energy storage properties of BaO-Na2O-Nb2O5-SiO2-Al2O3 glass-ceramics[J]. J Eur Ceram Soc, 2018, 38(5): 2312-2317.
[47] LIU Z G, TANG Z H, HU S C, et al. Excellent energy storage density and efficiency in lead-free Sm-doped BaTiO3-Bi(Mg0.5Ti0.5)O3 ceramics[J]. J Mater Chem C, 2020, 8(38): 13405-13414.
[48] , B; Y, et al. Optimization the energy density and efficiency of BaTiO3-based ceramics for capacitor applications[J]. Chem Eng J, 2021, 409: 127375.
[49] WANG H Y, CAO M H, TAO C, et al. Tuning the microstructure of BaTiO3@FeO core-shell nanoparticles with low temperatures sintering dense nanocrystalline ceramics for high energy storage capability and stability[J]. J Alloy Comp, 2021, 864: 158644.
[50] WANG H Y, CAO M H, HUANG R, et al. Preparation of BaTiO3@NiO core-shell nanoparticles with antiferroelectric-like characteristic and high energy storage capability[J]. J Eur Ceram Soc, 2021, 41(7): 4129-4137.
[51] ALKATHY M S, EIRAS J A, RAJU K C J. Energy storage enhancement and bandgap narrowing of lanthanum and sodium co-substituted BaTiO3 ceramics[J]. Ferroelectrics, 2021, 570(1): 153-161.
[53] PAN H, MA J, MA J, et al. Giant energy density and high efficiency achieved in bismuth ferrite-based film capacitors via domain engineering[J]. Nat Comm, 2018, 9(1): 13-18.
[54] PAN H, LI F, LIU Y, et al. Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design[J]. Science, 2019, 365(6453): 578-582.
[55] YA F, HOU R L, HAN W P, et al. Significantly enhanced energy storage performance in BiFeO3/BaTiO3/BiFeO3 sandwich-structured films through crystallinity regulation[J]. Phys Chem Chem Phys, 2018, 20(34): 21917-21924.
[56] LIU N T, LIANG R H, ZHOU Z Y, et al. Designing lead-free bismuth ferrite-based ceramics learning from relaxor ferroelectric behavior for simultaneous high energy density and efficiency under low electric field[J]. J Mater Chem C, 2018, 6(38): 10211-10217.
[57] WANG J H, SUN N N, LI Y, et al. Effects of Mn doping on dielectric properties and energy-storage performance of Na0.5Bi0.5TiO3 thick films[J]. Ceram Inter, 2017, 43(10): 7804-7809.
[58] YAN F, ZHOU X F, HE X, et al. Superior energy storage properties and excellent stability achieved in environment-friendly ferroelectrics via composition design strategy[J]. Nano Energy, 2020, 75: 105012.
[59] YAN F, HUANG K W, JIANG T, et al. Significantly enhanced energy storage density and efficiency of BNT-based perovskite ceramics via A-site defect engineering[J]. Energy Storage Mater, 2020, 30: 392-400.
[60] YAN F, BAI H R, ZHOU X F, et al. Realizing superior energy storage properties in lead-free ceramics via macro-structure design strategy[J]. J Mater Chem A, 2020, 8(23): 11656-11664.
[61] QIAO X S, SHENG A H, WU D, et al. A novel multifunctional ceramic with photoluminescence and outstanding energy storage properties[J]. Chem Eng J, 2021, 408: 127368.
[62] ZHANG M, YANG H B, DU L, et al. Giant energy storage efficiency and high recoverable energy storage density achieved in K0.5Na0.5NbO3-Bi(Zn0.5Zr0.5)O3 ceramics[J]. J Mater Chem C, 2020, 8(26): 8777-8785.
[63] YANG Z T, DU H L, QU S B, et al. Significantly enhanced energy storage density in transparen potassium-sodium niobate-based lead-free ceramics[J]. J Mater Chem A, 2016, 4(36): 13778-13785.
[64] YANG Z T, GAO F, DU H L, et al. Grain size engineered lead-free ceramics with both large energy storage density and ultrahigh mechanical properties[J]. Nano Energy, 2019, 58: 768-777.
[65] CHEN B, TIAN Y, LU J B, et al. Ultrahigh storage density achieved with (1-x)KNN-xBZN ceramics[J]. J Eur Ceram Soc, 2020, 40(8): 2936-2944.
[66] QIAO X S, ZHANG X S, WU D, et al. Influence of Bi nonstoichiometry on the energy storage properties of 0.93KNN-0.07BixMN relaxor ferroelectrics[J]. J Adv Dielectr, 2019, 8(6): 1830006.
[67] WANG X L, ZHANG L, HAO X H, et al. High energy-storage performance of 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 relaxor ferroelectric thin films prepared by RF magnetron sputtering[J]. Mater Res Bull, 2015, 65: 73-79.
[68] WANG C, SUN N N, LI Y, et al. Dielectric property and energy-storage performance of (100)-preferred (1-x)PbTiO3-xB i(Mg0.5Ti0.5)O3 relaxor ferroelectric thin films[J]. J Alloy Comp, 2019, 810: 151796.
[69] WANG C, SUN N N, HAO X H. Dielectric property and energy-storage performance of (1-x)PbTiO3-xBi(Mg0.5Zr0.5)O3 relaxor ferroelectric thin films[J]. J Mater Sci: Mater Electron, 2020, 31(37): 2063-2072.
[70] XIE Z K, PENG B, MENG S Q, et al. High-energy-storage density capacitors of Bi(Ni1/2Ti1/2)O3-PbTiO3 thin films with good temperature stability[J]. J Am Ceram Soc, 2013, 96(7): 2061-2064.
[71] CERQUEIRA M, NASAR R S, LEITE E R, et al. Sintering and characterization of PLZT (9/65/35)[J]. Ceram Inter, 2000, 26(3): 231-236.
[72] SHEN B Z, LI Y, HAO X H. Multifunctional all-inorganic flexible capacitor for energy storage and electrocaloric refrigeration[J]. ACS Appl Mater Interfaces, 2019, 11(37): 34117-34127.
[73] HU G L, MA C H, WEI W, et al. Enhanced energy density with a wide thermal stability in epitaxial Pb0.92La0.08Zr0.52Ti0.48O3 thin films [J]. Appl Phys Lett, 2016, 109(19): 193904.
[74] YE J M, WANG G S, ZHOU M X, et al. Excellent comprehensive energy storage properties of novel lead-free NaNbO3-based ceramics for dielectric capacitor applications[J]. J Mater Chem C, 2019, 7(19): 5639-5645.
[75] KIM K D, LEE Y H, GWON T, et al. Scale-up and optimization of HfO2-ZrO2 solid solution thin films for the electrostatic supercapacitors[J]. Nano Energy, 2017, 39: 390-399.
[76] XIE J Y, YAO M W, GAO W B, et al. Ultrahigh breakdown strength and energy density in PLZST@PBSAZM antiferroelectric ceramics based on core-shell structure[J]. J Eur Ceram Soc, 2019, 39(4): 1050-1056.
[77] HUANG J B, YAO M W, YAO X. High breakdown strength, energy density, and fast discharge times in PLZST films achieved by designed double-blocking structures[J]. ACS Appl Energy Mater, 2021, 4(6): 5897-5904.
[78] WANG H S, LIU Y C, YANG T Q, et al. Ultrahigh energy-storage density in antiferroelectric ceramics with field-induced multiphase transitions[J]. Adv Funct Mater, 2019, 29(7): 1807321.
[79] HUANG K W, GE G L, YAN F, et al. Ultralow electrical hysteresis along with high energy storage density in lead-based antiferroelectric ceramics[J]. Adv Electron Mater, 2020, 6(4): 1901366.
[80] GE G L, HUANG K W, WU S H, et al. Synergistic optimization of antiferroelectric ceramics with superior energy storage properties via phase structure engineering[J]. Energy Storage Mater, 2021, 35: 114-121.
[82] MENG X J, ZHAO Y, LI Y, et al. Simultaneously achieving ultrahigh energy density and power density in PbZrO3-based antiferroelectric ceramics with field-induced multistage phase transition[J]. J Alloy Comp, 2021, 868: 159149.
[83] MENG X J, ZHAO Y, LI Y, et al. Systematical investigation on energy storage behavior of PLZST antiferroelectric ceramics by composition optimizing[J]. J Am Ceram Soc, 2021, 104(5): 2170-2180.
[84] TIAN Y, JIN L, ZHANG H F, et al. High energy density in silver niobate ceramics[J]. J Mater Chem A, 2016, 4(44): 17279-17287.
[85] LI J, TIAN Y, LAN Y, et al. Silver deficiency effect on dielectric properties and energy storage performance of AgNbO3 ceramics[J]. Ceram Inter, 2021, 47(18): 26178-26184.
[86] ZHAO L, LIU Q, ZHANG S J, et al. Lead-free AgNbO3 anti-ferroelectric ceramics with an enhanced energy storage performance using MnO2 modification[J]. J Mater Chem C, 2016, 4(36): 8380-8384.
[87] ZHAO L, LIU Q, GAO J, et al. Lead-free antiferroelectric silver niobate tantalate with high energy storage performance[J]. Adv Mater, 2017, 29(31): 1701824.
[88] ZHAO L, GAO J, LIU Q, et al. Silver Niobate lead-free antiferroelectric ceramics: enhancing energy storage density by Bsite doping[J]. ACS Appl Mater Interfaces, 2018, 10(1): 819-826.
[89] HAN K, LUO N N, MAO S F, et al. Ultrahigh energy-storage density in A-/B-site co-doped AgNbO3 lead-free antiferroelectric ceramics: insight into the origin of antiferroelectricity[J]. J Mater Chem A, 2019, 7(46): 26293-26301.
[90] LUO N N, TANG X Y, HAN K, et al. Silver stoichiometry engineering: an alternative way to improve energy storage density of AgNbO3-based antiferroelectric ceramics[J]. J Mater Res, 2021, 36(5): 1067-1075.
[91] LUO N N, HAN K, CABRAL M J, et al. Constructing phase boundary in AgNbO3 antiferroelectrics: pathway simultaneously achieving high energy density and efficiency[J]. Nat Comm, 2020, 11(1): 4824.
[92] GAO J, LIU Q, DONG J F, et al. Local structure heterogeneity in Sm-doped AgNbO3 for improved energy-storage performance[J]. ACS Appl Mater Interfaces, 2020, 12(5): 6097-6104.
[93] LU Z L, BAO W C, WANG G, et al. Mechanism of enhanced energy storage density in AgNbO3-based lead-free antiferroelectrics[J]. Nano Energy, 2021, 79: 105423.
[94] LUO N N, HAN K, ZHUO F P, et al. Aliovalent A-site engineered AgNbO3 lead-free antiferroelectric ceramics toward superior energy storage density[J]. J Mater Chem A, 2019, 7(23): 14118-14128.
[95] YAN Z N, ZHANG D, ZHOU X F, et al. Silver niobate based lead-free ceramics with high energy storage density[J]. J Mater Chem A, 2019, 7(17): 10702-10711.
[96] LI S, NIE H C, WANG G S, et al. Significantly enhanced energy storage performance of rare-earth-modified silver niobate lead-free antiferroelectric ceramics via local chemical pressure tailoring[J]. J Mater Chem C, 2019, 7(6): 1551-1560.
[97] SHI P, WANG X J, LOU X J, et al. Significantly enhanced energy storage properties of Nd3+ doped AgNbO3 lead-free antiferroelectric ceramics[J]. J Alloy Comp, 2021, 877: 160162.
[98] LI S, HU T F, NIE H C, Giant energy density and high efficiency achieved in silver niobate-based lead-free antiferroelectric ceramic capacitors via domain engineering[J]. Energy Storage Mater, 2021, 34: 417-426.
[101] WANG G, LU Z, LI Y, et al. Electroceramics for high-energy density capacitors: current status and future perspectives[J]. Chemical Reviews, 2021, 121(10): 6124-6172.
[102] IAN B. Energy storage capacitor. US, US3638084 A[P]. 1972.
[103] TAN Q, IRWIN P, CAO Y. Advanced dielectrics for capacitors[J]. IEEJ Trans Fund Mater, 2006, 126(11): 1153-1159.
[105] LIU X H, LI Y, SUN N N, et al. High energy-storage performance of PLZS antiferroelectric multilayer ceramic capacitors[J]. Inorg Chem Front, 2020, 7(3): 756-764.
[106] LIU X H, ZHAO Y, SUN N N, et al. Ultra-high energy density induced by diversified enhancement effects in (Pb0.98-xLa0.02Cax)(Zr0.7Sn0.3)0.995O3 antiferroelectric multilayer ceramic capacitors[J]. Chem Eng J, 2021, 417: 128032.
[107] LI W B, ZHOU D, XU R, et al. BaTiO3-Bi(Li0.5Ta0.5)O3, lead-free ceramics, and multilayers with high energy storage density and efficiency[J]. ACS Appl Energy Mater, 2018, 1(9): 5016-5023.
[108] CAI Z M, ZHU C Q, WANG H X, et al. High-temperature lead-free multilayer ceramic capacitors with ultrahigh energy density and efficiency fabricated via two-step sintering[J]. J Mater Chem A, 2019, 7(24): 14575-14582.
[109] CAI Z M, ZHAO P Y, CHEN L L, et al. Significantly enhanced dielectric breakdown strength and energy density of multilayer ceramic capacitors with high efficiency by electrodes structure design[J]. Appl Phys Lett, 2019, 115(2): 023901.
[110] KUMAR N, IONIN A, ANSELL T, et al. Multilayer ceramic capacitors based on relaxor BaTiO3-Bi(Zn1/2Ti1/2)O3 for temperature stable and high energy density capacitor applications[J]. Appl Phys Lett, 2015, 106(25): 252901.
[111] LI J L, LI F, XU Z, et al. Multilayer lead-free ceramic capacitors with ultrahigh energy density and efficiency[J]. Adv Mater, 2018, 30(32): 1802155.
[112] WANG G, LI J L, ZHANG X, et al. Ultrahigh energy storage density lead-free multilayers by controlled electrical homogeneity[J]. Energ Environ Sci, 2019, 12(2): 582-588.
[113] ZHAO P Y, CAI Z M, CHEN L L, et al. Ultra-high energy storage performance in lead-free multilayer ceramic capacitors via a multiscale optimization strategy[J]. Energ Environ Sci, 2020, 13(12): 4882-4890.
[114] LI J L, SHEN Z H, CHEN X H, et al. Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications[J]. Nat Mater, 2020, 19(9): 1-7.
[115] ZHU L F, ZHAO L, YAN Y K, et al. Composition and strain engineered AgNbO3-based multilayer capacitors for ultra-high energy storage capacity[J]. J Mater Chem A, 2021, 9(7): 9655-9664.
[116] WANG G, LU Z L, YANG H J, et al. Fatigue resistant lead-free multilayer ceramic capacitors with ultrahigh energy density[J]. J Mater Chem A, 2020, 8(22): 11414-11423