• Nano-Micro Letters
  • Vol. 16, Issue 1, 118 (2024)
Ying Wu1,2,*, Chao An1,2, Yaru Guo1,2, Yangyang Zong1,2..., Naisheng Jiang1,2, Qingbin Zheng3,** and Zhong-Zhen Yu4,***|Show fewer author(s)
Author Affiliations
  • 1Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People’s Republic of China
  • 2Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang 110004, People’s Republic of China
  • 3School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong 518172, People’s Republic of China
  • 4State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-024-01357-w Cite this Article
    Ying Wu, Chao An, Yaru Guo, Yangyang Zong, Naisheng Jiang, Qingbin Zheng, Zhong-Zhen Yu. Highly Aligned Graphene Aerogels for Multifunctional Composites[J]. Nano-Micro Letters, 2024, 16(1): 118 Copy Citation Text show less
    References

    [1] C. Zhu, T.Y.-J. Han, E.B. Duoss, A.M. Golobic, J.D. Kuntz et al., Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 6, 6962 (2015).

    [2] M.A. Worsley, P.J. Pauzauskie, T.Y. Olson, J. Biener, J.H. Satcher Jr. et al., Synthesis of graphene aerogel with high electrical conductivity. J. Am. Chem. Soc. 132(40), 14067–14069 (2010).

    [3] Y. Lin, J. Chen, S. Dong, G. Wu, P. Jiang et al., Wet-resilient graphene aerogel for thermal conductivity enhancement in polymer nanocomposites. J. Mater. Sci. Technol. 83, 219–227 (2021).

    [4] S. Xi, L. Wang, H. Xie, W. Yu, Superhydrophilic modified elastomeric RGO aerogel based hydrated salt phase change materials for effective solar thermal conversion and storage. ACS Nano 16, 3843–3851 (2022).

    [5] Z. Wang, X. Shen, N.M. Han, X. Liu, Y. Wu et al., Ultralow electrical percolation in graphene aerogel/epoxy composites. Chem. Mater. 28, 6731–6741 (2016).

    [6] Z. Wang, R. Wei, J. Gu, H. Liu, C. Liu et al., Ultralight, highly compressible and fire-retardant graphene aerogel with self-adjustable electromagnetic wave absorption. Carbon 139, 1126–1135 (2018).

    [7] H.-Y. Zhao, C. Shu, P. Min, C. Li, W. Deng et al., Constructing anisotropic conical graphene aerogels with concentric annular structures for highly thermally conductive phase change composites towards efficient solar–thermal–electric energy conversion. J. Mater. Chem. A 10, 22488–22499 (2022).

    [8] W. Zhan, S. Yu, L. Gao, F. Wang, X. Fu et al., Bioinspired assembly of carbon nanotube into graphene aerogel with “cabbagelike” hierarchical porous structure for highly efficient organic pollutants cleanup. ACS Appl. Mater. Interfaces 10, 1093–1103 (2018).

    [9] W. Qian, H. Fu, Y. Sun, Z. Wang, H. Wu et al., Scalable assembly of high-quality graphene films via electrostatic-repulsion aligning. Adv. Mater. 34, e2206101 (2022).

    [10] G. Yang, X. Zhang, R. Wang, X. Liu, J. Zhang et al., Ultra-stretchable graphene aerogels at ultralow temperatures. Mater. Horiz. 10, 1865–1874 (2023).

    [11] Z. Wang, X. Shen, M.A. Garakani, X. Lin, Y. Wu et al., Graphene aerogel/epoxy composites with exceptional anisotropic structure and properties. ACS Appl. Mater. Interfaces 7, 5538–5549 (2015).

    [12] M. Wu, H. Geng, Y. Hu, H. Ma, C. Yang et al., Superelastic graphene aerogel-based metamaterials. Nat. Commun. 13, 4561 (2022).

    [13] Y. Zhang, L. Zhang, G. Zhang, H. Li, Naturally dried graphene-based nanocomposite aerogels with exceptional elasticity and high electrical conductivity. ACS Appl. Mater. Interfaces 10, 21565–21572 (2018).

    [14] F. Zhang, L. Guo, Y. Shi, Z. Jin, Y. Cheng et al., Structural engineering of graphite network for ultra-sensitive and durable strain sensors and strain-controlled switches. Chem. Eng. J. 452, 139664 (2023).

    [15] X. Guo, S. Cheng, B. Yan, Y. Li, R. Huang et al., Free-standing graphene aerogel with improved through-plane thermal conductivity after being annealed at high temperature. J. Colloid Interface Sci. 608, 2407–2413 (2022).

    [16] X. Xie, Y. Zhou, H. Bi, K. Yin, S. Wan et al., Large-range control of the microstructures and properties of three-dimensional porous graphene. Sci. Rep. 3, 2117 (2013).

    [17] X. Tong, W. Li, J. Li, S. Lu, B. Wang et al., In situ generation of TiO2 in graphene aerogel and its epoxy composite for electromagnetic interference shielding performance. J. Mater. Sci. Mater. Electron. 33, 5886–5898 (2022).

    [18] G. Gorgolis, C. Galiotis, Graphene aerogels: a review. 2D Mater. 4, 032001 (2017).

    [19] Z. Wang, L. Liu, Y. Zhang, Y. Huang, J. Liu et al., A review of graphene-based materials/polymer composite aerogels. Polymers 15, 1888 (2023).

    [20] G. Nassar, E. Daou, R. Najjar, M. Bassil, R. Habchi, A review on the current research on graphene-based aerogels and their applications. Carbon Trends 4, 100065 (2021).

    [21] Z. Cheng, R. Wang, Y. Wang, Y. Cao, Y. Shen et al., Recent advances in graphene aerogels as absorption-dominated electromagnetic interference shielding materials. Carbon 205, 112–137 (2023).

    [22] X. Shen, J.-K. Kim, Graphene and MXene-based porous structures for multifunctional electromagnetic interference shielding. Nano Res. 16, 1387–1413 (2023).

    [23] J. Mao, J. Iocozzia, J. Huang, K. Meng, Y. Lai et al., Graphene aerogels for efficient energy storage and conversion. Energy Environ. Sci. 11, 772–799 (2018).

    [24] J. Yang, X. Shen, W. Yang, J.-K. Kim, Templating strategies for 3D-structured thermally conductive composites: recent advances and thermal energy applications. Prog. Mater. Sci. 133, 101054 (2023).

    [25] S. Yu, X. Shen, J.-K. Kim, Beyond homogeneous dispersion: oriented conductive fillers for high κ nanocomposites. Mater. Horiz. 8, 3009–3042 (2021).

    [26] X. Shen, Q. Zheng, J.-K. Kim, Rational design of two-dimensional nanofillers for polymer nanocomposites toward multifunctional applications. Prog. Mater. Sci. 115, 100708 (2021).

    [27] M. Yang, N. Zhao, Y. Cui, W. Gao, Q. Zhao et al., Biomimetic architectured graphene aerogel with exceptional strength and resilience. ACS Nano 11, 6817–6824 (2017).

    [28] B. Yao, J. Chen, L. Huang, Q. Zhou, G. Shi, Base-induced liquid crystals of graphene oxide for preparing elastic graphene foams with long-range ordered microstructures. Adv. Mater. 28, 1623–1629 (2016).

    [29] H. Guo, T. Hua, J. Qin, Q. Wu, R. Wang et al., A new strategy of 3D printing lightweight lamellar graphene aerogels for electromagnetic interference shielding and piezoresistive sensor applications. Adv. Mater. Technol. 7, 2101699 (2022).

    [30] P. Zhang, J. Li, L. Lv, Y. Zhao, L. Qu, Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water. ACS Nano 11, 5087–5093 (2017).

    [31] Q. Liang, X. Yao, W. Wang, Y. Liu, C.P. Wong, A three-dimensional vertically aligned functionalized multilayer graphene architecture: an approach for graphene-based thermal interfacial materials. ACS Nano 5, 2392–2401 (2011).

    [32] P. Li, Y. Liu, S. Shi, Z. Xu, W. Ma et al., Highly crystalline graphene fibers with superior strength and conductivities by plasticization spinning. Adv. Funct. Mater. 30, 2006584 (2020).

    [33] H.-Y. Mi, X. Jing, A.L. Politowicz, E. Chen, H.-X. Huang et al., Highly compressible ultra-light anisotropic cellulose/graphene aerogel fabricated by bidirectional freeze drying for selective oil absorption. Carbon 132, 199–209 (2018).

    [34] X. Jiang, Z. Zhao, S. Zhou, H. Zou, P. Liu, Anisotropic and lightweight carbon/graphene composite aerogels for efficient thermal insulation and electromagnetic interference shielding. ACS Appl. Mater. Interfaces 14, 45844–45852 (2022).

    [35] P. Liu, X. Li, X. Chang, P. Min, C. Shu et al., Highly anisotropic graphene aerogels fabricated by calcium ion-assisted unidirectional freezing for highly sensitive sensors and efficient cleanup of crude oil spills. Carbon 178, 301–309 (2021).

    [36] J. Dong, J. Zeng, B. Wang, Z. Cheng, J. Xu et al., Mechanically flexible carbon aerogel with wavy layers and springboard elastic supporting structure for selective oil/organic solvent recovery. ACS Appl. Mater. Interfaces 13, 15910–15924 (2021).

    [37] Q. Peng, Y. Qin, X. Zhao, X. Sun, Q. Chen et al., Superlight, mechanically flexible, thermally superinsulating, and antifrosting anisotropic nanocomposite foam based on hierarchical graphene oxide assembly. ACS Appl. Mater. Interfaces 9, 44010–44017 (2017).

    [38] W. Chang, X.-Y. Zhang, J. Qu, Z. Chen, Y.-J. Zhang et al., Freestanding Na3V2O2(PO4)2F/graphene aerogels as high-performance cathodes of sodium-ion full batteries. ACS Appl. Mater. Interfaces 12, 41419–41428 (2020).

    [39] Y. Lin, F. Liu, G. Casano, R. Bhavsar, I.A. Kinloch et al., Pristine graphene aerogels by room-temperature freeze gelation. Adv. Mater. 28, 7993–8000 (2016).

    [40] J. Kim, A.P. Tiwari, M. Choi, Q. Chen, J. Lee et al., Boosting bifunctional oxygen electrocatalysis of graphitic C3N4 using non-covalently functionalized non-oxidized graphene aerogels as catalyst supports. J. Mater. Chem. A 10, 15689–15697 (2022).

    [41] Y. Ham, V. Ri, J. Kim, Y. Yoon, J. Lee et al., Multi-redox phenazine/non-oxidized graphene/cellulose nanohybrids as ultrathick cathodes for high-energy organic batteries. Nano Res. 14, 1382–1389 (2021).

    [42] J. Kim, N.M. Han, J. Kim, J. Lee, J.K. Kim et al., Highly conductive and fracture-resistant epoxy composite based on non-oxidized graphene flake aerogel. ACS Appl. Mater. Interfaces 10, 37507–37516 (2018).

    [43] J. Jia, C.-M. Kan, X. Lin, X. Shen, J.-K. Kim, Effects of processing and material parameters on synthesis of monolayer ultralarge graphene oxide sheets. Carbon 77, 244–254 (2014).

    [44] X. Lin, X. Shen, Q. Zheng, N. Yousefi, L. Ye et al., Fabrication of highly-aligned, conductive, and strong graphene papers using ultralarge graphene oxide sheets. ACS Nano 6, 10708–10719 (2012).

    [45] Q. Zheng, W.H. Ip, X. Lin, N. Yousefi, K.K. Yeung et al., Transparent conductive films consisting of ultralarge graphene sheets produced by Langmuir-Blodgett assembly. ACS Nano 5, 6039–6051 (2011).

    [46] Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk et al., Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22, 3906–3924 (2010).

    [47] O.C. Compton, S.T. Nguyen, Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6, 711–723 (2010).

    [48] D. Konios, M.M. Stylianakis, E. Stratakis, E. Kymakis, Dispersion behaviour of graphene oxide and reduced graphene oxide. J. Colloid Interface Sci. 430, 108–112 (2014).

    [49] K. Erickson, R. Erni, Z. Lee, N. Alem, W. Gannett et al., Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv. Mater. 22, 4467–4472 (2010).

    [50] Y. Ma, Y. Gu, Y. He, L. Wei, Y. Lian et al., Fast-charging and dendrite-free lithium metal anode enabled by partial lithiation of graphene aerogel. Nano Res. 15, 9792–9799 (2022).

    [51] J. Hu, J. Zhu, S. Ge, C. Jiang, T. Guo et al., Biocompatible, hydrophobic and resilience graphene/chitosan composite aerogel for efficient oil–water separation. Surf. Coat. Technol. 385, 125361 (2020).

    [52] L. Dou, X. Zhang, X. Cheng, Z. Ma, X. Wang et al., Hierarchical cellular structured ceramic nanofibrous aerogels with temperature-invariant superelasticity for thermal insulation. ACS Appl. Mater. Interfaces 11, 29056–29064 (2019).

    [53] M. Liu, Z. Yang, H. Sun, C. Lai, X. Zhao et al., A hybrid carbon aerogel with both aligned and interconnected pores as interlayer for high-performance lithium–sulfur batteries. Nano Res. 9, 3735–3746 (2016).

    [54] S. Wu, R.B. Ladani, J. Zhang, K. Ghorbani, X. Zhang et al., Strain sensors with adjustable sensitivity by tailoring the microstructure of graphene aerogel/PDMS nanocomposites. ACS Appl. Mater. Interfaces 8, 24853–24861 (2016).

    [55] Z. Xu, Y. Zhang, P. Li, C. Gao, Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores. ACS Nano 6, 7103–7113 (2012).

    [56] M.-A. Shahbazi, M. Ghalkhani, H. Maleki, Directional freeze-casting: a bioinspired method to assemble multifunctional aligned porous structures for advanced applications. Adv. Eng. Mater. 22, 2000033 (2020).

    [57] G. Shao, D.A.H. Hanaor, X. Shen, A. Gurlo, Freeze casting: from low-dimensional building blocks to aligned porous structures-a review of novel materials, methods, and applications. Adv. Mater. 32, e1907176 (2020).

    [58] J.-H. Oh, J. Kim, H. Lee, Y. Kang, I.-K. Oh, Directionally antagonistic graphene oxide-polyurethane hybrid aerogel as a sound absorber. ACS Appl. Mater. Interfaces 10, 22650–22660 (2018).

    [59] C. Wang, M. Huang, R.S. Ruoff, Graphene oxide aerogel ‘ink’ at room temperature, and ordered structures by freeze casting. Carbon 183, 620–627 (2021).

    [60] J. Yang, W. Yang, W. Chen, X. Tao, An elegant coupling: freeze-casting and versatile polymer composites. Prog. Polym. Sci. 109, 101289 (2020).

    [61] D. Fan, X. Yang, J. Liu, P. Zhou, X. Zhang, Highly aligned graphene/biomass composite aerogels with anisotropic properties for strain sensing. Compos. Commun. 27, 100887 (2021).

    [62] L. Quan, C. Wang, Y. Xu, J. Qiu, H. Zhang et al., Electromagnetic properties of graphene aerogels made by freeze-casting. Chem. Eng. J. 428, 131337 (2022).

    [63] X. Zhu, C. Yang, P. Wu, Z. Ma, Y. Shang et al., Precise control of versatile microstructure and properties of graphene aerogel via freezing manipulation. Nanoscale 12, 4882–4894 (2020).

    [64] X.-H. Li, P. Liu, X. Li, F. An, P. Min et al., Vertically aligned, ultralight and highly compressive all-graphitized graphene aerogels for highly thermally conductive polymer composites. Carbon 140, 624–633 (2018).

    [65] N.M. Han, Z. Wang, X. Shen, Y. Wu, X. Liu et al., Graphene size-dependent multifunctional properties of unidirectional graphene aerogel/epoxy nanocomposites. ACS Appl. Mater. Interfaces 10, 6580–6592 (2018).

    [66] W. Gao, N. Zhao, W. Yao, Z. Xu, H. Bai et al., Effect of flake size on the mechanical properties of graphene aerogels prepared by freeze casting. RSC Adv. 7, 33600–33605 (2017).

    [67] U.G.K. Wegst, M. Schecter, A.E. Donius, P.M. Hunger, Biomaterials by freeze casting. Philos. Trans. A Math. Phys. Eng. Sci. 368, 2099–2121 (2010).

    [68] U.G.K. Wegst, H. Bai, E. Saiz, A.P. Tomsia, R.O. Ritchie, Bioinspired structural materials. Nat. Mater. 14, 23–36 (2015).

    [69] L. Estevez, A. Kelarakis, Q. Gong, E.H. Da’as, E.P. Giannelis, Multifunctional graphene/platinum/Nafion hybrids via ice templating. J. Am. Chem. Soc. 133, 6122–6125 (2011).

    [70] J.L. Vickery, A.J. Patil, S. Mann, Fabrication of graphene–polymer nanocomposites with higher-order three-dimensional architectures. Adv. Mater. 21, 2180–2184 (2009).

    [71] Z. He, M. Qin, C. Han, X. Bai, Y. Wu et al., Pectin/graphene oxide aerogel with bamboo-like structure for enhanced dyes adsorption. Colloids Surf. A Physicochem. Eng. Aspects 652, 129837 (2022).

    [72] S. Long, Y. Feng, F. He, S. He, H. Hong et al., An ultralight, supercompressible, superhydrophobic and multifunctional carbon aerogel with a specially designed structure. Carbon 158, 137–145 (2020).

    [73] V. Rodríguez-Mata, González-Domı́nguez JM, Benito AM, Maser WK, García-Bordejé E, Reduced graphene oxide aerogels with controlled continuous microchannels for environmental remediation. ACS Appl. Nano Mater. 2, 1210–1222 (2019).

    [74] P. Min, J. Liu, X. Li, F. An, P. Liu et al., Thermally conductive phase change composites featuring anisotropic graphene aerogels for real-time and fast-charging solar-thermal energy conversion. Adv. Funct. Mater. 28, 1805365 (2018).

    [75] C. Shen, J.E. Calderon, E. Barrios, M. Soliman, A. Khater et al., Anisotropic electrical conductivity in polymer derived ceramics induced by graphene aerogels. J. Mater. Chem. C 5, 11708–11716 (2017).

    [76] Z. Lin, W. Jiang, Z. Chen, L. Zhong, C. Liu, Shape-memory and anisotropic carbon aerogel from biomass and graphene oxide. Molecules 26, 5715 (2021).

    [77] M. Farbod, M. Madadi Jaberi, Fabrication of graphene aerogel and graphene/carbon nanotube composite aerogel by freeze casting under ambient pressure and comparison of their properties. Fuller. Nanotub. Carbon Nanostruct. 29, 244–250 (2021).

    [78] Z. He, X. Li, H. Wang, F. Su, D. Wang et al., Synergistic regulation of the microstructure for multifunctional graphene aerogels by a dual template method. ACS Appl. Mater. Interfaces 14, 22544–22553 (2022).

    [79] X.-J. Yu, J. Qu, Z. Yuan, P. Min, S.-M. Hao et al., Anisotropic CoFe2O4@Graphene hybrid aerogels with high flux and excellent stability as building blocks for rapid catalytic degradation of organic contaminants in a flow-type setup. ACS Appl. Mater. Interfaces 11, 34222–34231 (2019).

    [80] B. Jiang, K. Liang, Z. Yang, K. Guo, F. Shaik et al., FeCoNiB@Boron-doped vertically aligned graphene arrays: a self-supported electrocatalyst for overall water splitting in a wide pH range. Electrochim. Acta 386, 138459 (2021).

    [81] P. Yang, G. Tontini, J. Wang, I.A. Kinloch, S. Barg, Ice-templated hybrid graphene oxide-graphene nanoplatelet lamellar architectures: tuning mechanical and electrical properties. Nanotechnology 32, 205601 (2021).

    [82] S. Kang, S. Qiao, Y. Cao, Z. Hu, J. Yu et al., Compression strain-dependent tubular carbon nanofibers/graphene aerogel absorber with ultrabroad absorption band. Chem. Eng. J. 433, 133619 (2022).

    [83] Z. Zeng, N. Wu, W. Yang, H. Xu, Y. Liao et al., Sustainable-macromolecule-assisted preparation of cross-linked, ultralight, flexible graphene aerogel sensors toward low-frequency strain/pressure to high-frequency vibration sensing. Small 18, e2202047 (2022).

    [84] L. Liu, J. Zhang, G. Shi, H. Zhang, B. Wang et al., An elastic and lamellar piezoresistive graphene/MXene aerogel. J. Mater. Sci. 57, 11202–11214 (2022).

    [85] Z. Chen, Y. Hu, H. Zhuo, L. Liu, S. Jing et al., Compressible, elastic, and pressure-sensitive carbon aerogels derived from 2D titanium carbide nanosheets and bacterial cellulose for wearable sensors. Chem. Mater. 31, 3301–3312 (2019).

    [86] P. Feng, X. Wang, J. Yang, Biomimetic, highly reusable and hydrophobic graphene/polyvinyl alcohol/cellulose nanofiber aerogels as oil-removing absorbents. Polymers 14, 1077 (2022).

    [87] P. Min, X. Li, P. Liu, J. Liu, X.-Q. Jia et al., Rational design of soft yet elastic lamellar graphene aerogels via bidirectional freezing for ultrasensitive pressure and bending sensors. Adv. Funct. Mater. 31, 2103703 (2021).

    [88] M. Cao, S.-L. Li, J.-B. Cheng, A.-N. Zhang, Y.-Z. Wang et al., Fully bio-based, low fire-hazard and superelastic aerogel without hazardous cross-linkers for excellent thermal insulation and oil clean-up absorption. J. Hazard. Mater. 403, 123977 (2021).

    [89] M. Wang, C. Shao, S. Zhou, J. Yang, F. Xu, Super-compressible, fatigue resistant and anisotropic carbon aerogels for piezoresistive sensors. Cellulose 25, 7329–7340 (2018).

    [90] Y. Dai, X. Wu, Z. Liu, H.-B. Zhang, Z.-Z. Yu, Highly sensitive, robust and anisotropic MXene aerogels for efficient broadband microwave absorption. Compos. Part B Eng. 200, 108263 (2020).

    [91] Q. Xu, X. Chang, Z. Zhu, L. Xu, X. Chen et al., Flexible pressure sensors with high pressure sensitivity and low detection limit using a unique honeycomb-designed polyimide/reduced graphene oxide composite aerogel. RSC Adv. 11, 11760–11770 (2021).

    [92] Y. Wu, Z. Wang, X. Shen, X. Liu, N.M. Han et al., Graphene/boron nitride-polyurethane microlaminates for exceptional dielectric properties and high energy densities. ACS Appl. Mater. Interfaces 10, 26641–26652 (2018).

    [93] G. Xu, M. Li, T. Wu, C. Teng, Highly compressible and anisotropic polyimide aerogels containing aramid nanofibers. React. Funct. Polym. 154, 104672 (2020).

    [94] J. Yang, Y. Chen, K. Gao, Y. Li, S. Wang et al., Biomimetic superelastic sodium alginate-based sponges with porous sandwich-like architectures. Carbohydr. Polym. 272, 118527 (2021).

    [95] H. Bai, Y. Chen, B. Delattre, A.P. Tomsia, R.O. Ritchie, Bioinspired large-scale aligned porous materials assembled with dual temperature gradients. Sci. Adv. 1, e1500849 (2015).

    [96] K. Zhou, C. Chen, M. Lei, Q. Gao, S. Nie et al., Reduced graphene oxide-based highly sensitive pressure sensor for wearable electronics via an ordered structure and enhanced interlayer interaction mechanism. RSC Adv. 10, 2150–2159 (2020).

    [97] W. Ma, Z. Ma, Y. Cai, R. Du, Z. Xu et al., Elastic aerogel with tunable wettability for self-cleaning electronic skin. ACS Mater. Lett. 2, 1575–1582 (2020).

    [98] W. Xu, Y. Xing, J. Liu, H. Wu, Y. Cui et al., Efficient water transport and solar steam generation via radially, hierarchically structured aerogels. ACS Nano 13, 7930–7938 (2019).

    [99] C. Wang, X. Chen, B. Wang, M. Huang, B. Wang et al., Freeze-casting produces a graphene oxide aerogel with a radial and centrosymmetric structure. ACS Nano 12, 5816–5825 (2018).

    [100] F. Su, J. Mok, J. McKittrick, Radial-concentric freeze casting inspired by porcupine fish spines. Ceramics 2, 161–179 (2019).

    [101] L. Fan, J.-L. Li, Z. Cai, X. Wang, Creating biomimetic anisotropic architectures with co-aligned nanofibers and macrochannels by manipulating ice crystallization. ACS Nano 12, 5780–5790 (2018).

    [102] Y. Lin, Q. Kang, H. Wei, H. Bao, P. Jiang et al., Spider web-inspired graphene skeleton-based high thermal conductivity phase change nanocomposites for battery thermal management. Nano-Micro Lett. 13, 180 (2021).

    [103] R. Yu, Y. Shi, D. Yang, Y. Liu, J. Qu et al., Graphene oxide/chitosan aerogel microspheres with honeycomb-cobweb and radially oriented microchannel structures for broad-spectrum and rapid adsorption of water contaminants. ACS Appl. Mater. Interfaces 9, 21809–21819 (2017).

    [104] A. Ouyang, A. Cao, S. Hu, Y. Li, R. Xu et al., Polymer-coated graphene aerogel beads and supercapacitor application. ACS Appl. Mater. Interfaces 8, 11179–11187 (2016).

    [105] Y. Liu, D. Yang, Y. Shi, L. Song, R. Yu et al., Silver phosphate/graphene oxide aerogel microspheres with radially oriented microchannels for highly efficient and continuous removal of pollutants from wastewaters. ACS Sustain. Chem. Eng. 7, 11228–11240 (2019).

    [106] B. Dan, N. Behabtu, A. Martinez, J.S. Evans, D.V. Kosynkin et al., Liquid crystals of aqueous, giant graphene oxide flakes. Soft Matter 7, 11154–11159 (2011).

    [107] R. Narayan, J.E. Kim, J.Y. Kim, K.E. Lee, S.O. Kim, Graphene oxide liquid crystals: discovery, evolution and applications. Adv. Mater. 28, 3045–3068 (2016).

    [108] R. Jalili, S.H. Aboutalebi, D. Esrafilzadeh, K. Konstantinov, J.M. Razal et al., Formation and processability of liquid crystalline dispersions of graphene oxide. Mater. Horiz. 1, 87–91 (2014).

    [109] K.E. Lee, J.E. Kim, U.N. Maiti, J. Lim, J.O. Hwang et al., Liquid crystal size selection of large-size graphene oxide for size-dependent N-doping and oxygen reduction catalysis. ACS Nano 8, 9073–9080 (2014).

    [110] J.E. Kim, T.H. Han, S.H. Lee, J.Y. Kim, C.W. Ahn et al., Graphene oxide liquid crystals. Angew. Chem. Int. Ed. 50, 3043–3047 (2011).

    [111] S. Padmajan Sasikala, J. Lim, I.H. Kim, H.J. Jung, T. Yun et al., Graphene oxide liquid crystals: a frontier 2D soft material for graphene-based functional materials. Chem. Soc. Rev. 47, 6013–6045 (2018).

    [112] Z. Xu, C. Gao, Aqueous liquid crystals of graphene oxide. ACS Nano 5, 2908–2915 (2011).

    [113] Z. Xu, C. Gao, Graphene chiral liquid crystals and macroscopic assembled fibres. Nat. Commun. 2, 571 (2011).

    [114] S. Thakur, N. Karak, Alternative methods and nature-based reagents for the reduction of graphene oxide: a review. Carbon 94, 224–242 (2015).

    [115] E. Garcia-Bordejé, A.M. Benito, W.K. Maser, Graphene aerogels via hydrothermal gelation of graphene oxide colloids: fine-tuning of its porous and chemical properties and catalytic applications. Adv. Colloid Interface Sci. 292, 102420 (2021).

    [116] X. Wu, K. Hou, J. Huang, J. Wang, S. Yang, Graphene-based cellular materials with extremely low density and high pressure sensitivity based on self-assembled graphene oxide liquid crystals. J. Mater. Chem. C 6, 8717–8725 (2018).

    [117] Y. Liu, Q. Shi, C. Hou, Q. Zhang, Y. Li et al., Versatile mechanically strong and highly conductive chemically converted graphene aerogels. Carbon 125, 352–359 (2017).

    [118] J.D. Afroze, M.J. Abden, Z. Yuan, C. Wang, L. Wei et al., Core-shell structured graphene aerogels with multifunctional mechanical, thermal and electromechanical properties. Carbon 162, 365–374 (2020).

    [119] Q. Meng, H. Wan, W. Zhu, T. Duan, W. Yao, Naturally dried, double nitrogen-doped 3D graphene aerogels modified by plant extracts for multifunctional applications. ACS Sustain. Chem. Eng. 6, 1172–1181 (2018).

    [120] W. Zhan, X. Fu, F. Wang, W. Zhang, G. Bai et al., Effect of aromatic amine modified graphene aerogel on the curing kinetics and interfacial interaction of epoxy composites. J. Mater. Sci. 55, 10558–10571 (2020).

    [121] J.-K. Xiao, J.-Z. Gong, M. Dai, Y.-F. Zhang, S.-G. Wang et al., Reduced graphene oxide/Ag nanoparticle aerogel for efficient solar water evaporation. J. Alloys Compd. 930, 167404 (2023).

    [122] D. Dai, Y. Zhou, W. Xiao, Z. Hao, H. Zhang et al., Multiple functional base-induced highly ordered graphene aerogels. J. Mater. Chem. C 9, 8849–8854 (2021).

    [123] W. Deng, Q. Fang, H. Huang, X. Zhou, J. Ma et al., Oriented arrangement: the origin of versatility for porous graphene materials. Small 13, 1701231 (2017).

    [124] Y. Jiang, H. Shao, C. Li, T. Xu, Y. Zhao et al., Versatile graphene oxide putty-like material. Adv. Mater. 28, 10287–10292 (2016).

    [125] Z. Xiong, C. Liao, W. Han, X. Wang, Mechanically tough large-area hierarchical porous graphene films for high-performance flexible supercapacitor applications. Adv. Mater. 27, 4469–4475 (2015).

    [126] Z. Tang, S. Shen, J. Zhuang, X. Wang, Noble-metal-promoted three-dimensional macroassembly of single-layered graphene oxide. Angew. Chem. Int. Ed. 49, 4603–4607 (2010).

    [127] P. Kumar, U.N. Maiti, K.E. Lee, S.O. Kim, Rheological properties of graphene oxide liquid crystal. Carbon 80, 453–461 (2014).

    [128] P. Poulin, R. Jalili, W. Neri, F. Nallet, T. Divoux et al., Superflexibility of graphene oxide. Proc. Natl. Acad. Sci. U.S.A. 113, 11088–11093 (2016).

    [129] Y.H. Shim, H. Ahn, S. Lee, S.O. Kim, S.Y. Kim, Universal alignment of graphene oxide in suspensions and fibers. ACS Nano 15, 13453–13462 (2021).

    [130] Y. Jiang, F. Guo, J. Zhang, Z. Xu, F. Wang et al., Aligning curved stacking bands to simultaneously strengthen and toughen lamellar materials. Mater. Horiz. 10, 556–565 (2023).

    [131] Y. Jiang, F. Guo, Z. Xu, W. Gao, C. Gao, Artificial colloidal liquid metacrystals by shearing microlithography. Nat. Commun. 10, 4111 (2019).

    [132] D.K. Maurya, S. Deo, D.Y. Khanukaeva, Analysis of Stokes flow of micropolar fluid through a porous cylinder. Math. Methods Appl. Sci. 44, 6647–6665 (2021).

    [133] Z. Xu, C. Gao, Graphene in macroscopic order: liquid crystals and wet-spun fibers. Acc. Chem. Res. 47, 1267–1276 (2014).

    [134] F. Wang, Y. Jiang, Y. Liu, F. Guo, W. Fang et al., Liquid crystalline 3D printing for superstrong graphene microlattices with high density. Carbon 159, 166–174 (2020).

    [135] L. He, J. Ye, M. Shuai, Z. Zhu, X. Zhou et al., Graphene oxide liquid crystals for reflective displays without polarizing optics. Nanoscale 7, 1616–1622 (2015).

    [136] L.C. Geonzon, M. Kobayashi, Y. Adachi, Effect of shear flow on the hydrodynamic drag force of a spherical particle near a wall evaluated using optical tweezers and microfluidics. Soft Matter 17, 7914–7920 (2021).

    [137] M. Cao, Z. Li, J. Lu, B. Wang, H. Lai et al., Vertical array of graphite oxide liquid crystal by microwire shearing for highly thermally conductive composites. Adv. Mater. 35, e2300077 (2023).

    [138] J. Ma, S. Lin, Y. Jiang, P. Li, H. Zhang et al., Digital programming graphene oxide liquid crystalline hybrid hydrogel by shearing microlithography. ACS Nano 14, 2336–2344 (2020).

    [139] H. Geng, X. Liu, G. Shi, G. Bai, J. Ma et al., Graphene oxide restricts growth and recrystallization of ice crystals. Angew. Chem. Int. Ed. 56, 997–1001 (2017).

    [140] X. Zhang, P. Liu, Y. Duan, M. Jiang, J. Zhang, Graphene/cellulose nanocrystals hybrid aerogel with tunable mechanical strength and hydrophilicity fabricated by ambient pressure drying technique. RSC Adv. 7, 16467–16473 (2017).

    [141] F. Gong, W. Wang, H. Li, D.D. Xia, Q. Dai et al., Solid waste and graphite derived solar steam generator for highly-efficient and cost-effective water purification. Appl. Energy 261, 114410 (2020).

    [142] J. Liu, Z. Khanam, S. Ahmed, T. Wang, H. Wang et al., Flexible antifreeze Zn-ion hybrid supercapacitor based on gel electrolyte with graphene electrodes. ACS Appl. Mater. Interfaces 13, 16454–16468 (2021).

    [143] C. Huang, J. Peng, Y. Cheng, Q. Zhao, Y. Du et al., Ultratough nacre-inspired epoxy–graphene composites with shape memory properties. J. Mater. Chem. A 7, 2787–2794 (2019).

    [144] X. Meng, J. Yang, S. Ramakrishna, Y. Sun, Y. Dai, Gradient vertical channels within aerogels based on N-doped graphene meshes toward efficient and salt-resistant solar evaporation. ACS Sustain. Chem. Eng. 8, 4955–4965 (2020).

    [145] C.-Z. Qi, X. Wu, J. Liu, X.-J. Luo, H.-B. Zhang et al., Highly conductive calcium ion-reinforced MXene/sodium alginate aerogel meshes by direct ink writing for electromagnetic interference shielding and Joule heating. J. Mater. Sci. Technol. 135, 213–220 (2023).

    [146] Y. Jiang, Z. Xu, T. Huang, Y. Liu, F. Guo et al., Direct 3D printing of ultralight graphene oxide aerogel microlattices. Adv. Funct. Mater. 28, 1707024 (2018).

    [147] X. Zhao, W. Gao, W. Yao, Y. Jiang, Z. Xu et al., Ion diffusion-directed assembly approach to ultrafast coating of graphene oxide thick multilayers. ACS Nano 11, 9663–9670 (2017).

    [148] G. Shao, X. Shen, X. Huang, Multilevel structural design and heterointerface engineering of a host–guest binary aerogel toward multifunctional broadband microwave absorption. ACS Mater. Lett. 4, 1787–1797 (2022).

    [149] L. Qiu, J.Z. Liu, S.L.Y. Chang, Y. Wu, D. Li, Biomimetic superelastic graphene-based cellular monoliths. Nat. Commun. 3, 1241 (2012).

    [150] X. Huang, G. Yu, Y. Zhang, M. Zhang, G. Shao, Design of cellular structure of graphene aerogels for electromagnetic wave absorption. Chem. Eng. J. 426, 131894 (2021).

    [151] H. Yang, T. Zhang, M. Jiang, Y. Duan, J. Zhang, Ambient pressure dried graphene aerogels with superelasticity and multifunctionality. J. Mater. Chem. A 3, 19268–19272 (2015).

    [152] Z.-L. Yu, N. Yang, L.-C. Zhou, Z.-Y. Ma, Y.-B. Zhu et al., Bioinspired polymeric woods. Sci. Adv. 4, eaat7223 (2018).

    [153] K.C. Lai, L.Y. Lee, B.Y.Z. Hiew, S. Thangalazhy-Gopakumar, S. Gan, Environmental application of three-dimensional graphene materials as adsorbents for dyes and heavy metals: review on ice-templating method and adsorption mechanisms. J. Environ. Sci. (China) 79, 174–199 (2019).

    [154] W. Gao, N. Zhao, T. Yu, J. Xi, A. Mao et al., High-efficiency electromagnetic interference shielding realized in nacre-mimetic graphene/polymer composite with extremely low graphene loading. Carbon 157, 570–577 (2020).

    [155] Y. Wang, B. Yao, H. Chen, H. Wang, C. Li et al., Preparation of anisotropic conductive graphene aerogel/polydimethylsiloxane composites as LEGO® modulars. Eur. Polym. J. 112, 487–492 (2019).

    [156] H.-L. Gao, Y.-B. Zhu, L.-B. Mao, F.-C. Wang, X.-S. Luo et al., Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure. Nat. Commun. 7, 12920 (2016).

    [157] Z. Wang, N.M. Han, Y. Wu, X. Liu, X. Shen et al., Ultrahigh dielectric constant and low loss of highly-aligned graphene aerogel/poly(vinyl alcohol) composites with insulating barriers. Carbon 123, 385–394 (2017).

    [158] F. Guo, X. Shen, J. Zhou, D. Liu, Q. Zheng et al., Highly thermally conductive dielectric nanocomposites with synergistic alignments of graphene and boron nitride nanosheets. Adv. Funct. Mater. 30, 1910826 (2020).

    [159] G. Li, X. Zhang, J. Wang, J. Fang, From anisotropic graphene aerogels to electron- and photo-driven phase change composites. J. Mater. Chem. A 4, 17042–17049 (2016).

    [160] G. Li, Z. Chu, X. Gong, M. Xiao, Q. Dong et al., A wide-range linear and stable piezoresistive sensor based on methylcellulose-reinforced, lamellar, and wrinkled graphene aerogels. Adv. Mater. Technol. 7, 2101021 (2022).

    [161] N. Ni, S. Barg, E. Garcia-Tunon, F.M. Perez, M. Miranda et al., Understanding mechanical response of elastomeric graphene networks. Sci. Rep. 5, 13712 (2015).

    [162] T. Liu, M. Huang, X. Li, C. Wang, C.-X. Gui et al., Highly compressible anisotropic graphene aerogels fabricated by directional freezing for efficient absorption of organic liquids. Carbon 100, 456–464 (2016).

    [163] Y. Qin, Q. Peng, Y. Zhu, X. Zhao, Z. Lin et al., Lightweight, mechanically flexible and thermally superinsulating rGO/polyimide nanocomposite foam with an anisotropic microstructure. Nanoscale Adv. 1, 4895–4903 (2019).

    [164] X. Zhao, W. Wu, D. Drummer, Y. Wang, S. Cui et al., SiC nanowires bridged graphene aerogels with a vertically aligned structure for highly thermal conductive epoxy resin composites and their mechanism. ACS Appl. Electron. Mater. 5, 2548–2557 (2023).

    [165] F. An, X. Li, P. Min, P. Liu, Z.-G. Jiang et al., Vertically aligned high-quality graphene foams for anisotropically conductive polymer composites with ultrahigh through-plane thermal conductivities. ACS Appl. Mater. Interfaces 10, 17383–17392 (2018).

    [166] P. Liu, X. Li, P. Min, X. Chang, C. Shu et al., 3D lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness. Nano-Micro Lett. 13, 22 (2020).

    [167] Y. Cui, S.I. Kundalwal, S. Kumar, Gas barrier performance of graphene/polymer nanocomposites. Carbon 98, 313–333 (2016).

    [168] X. Tang, H. Zhou, Z. Cai, D. Cheng, P. He et al., Generalized 3D printing of graphene-based mixed-dimensional hybrid aerogels. ACS Nano 12, 3502–3511 (2018).

    [169] W.-L. Song, M.-S. Cao, M.-M. Lu, S. Bi, C.-Y. Wang et al., Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. Carbon 66, 67–76 (2014).

    [170] Y. Wu, Z. Wang, X. Liu, X. Shen, Q. Zheng et al., Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding. ACS Appl. Mater. Interfaces 9, 9059–9069 (2017).

    [171] X.-H. Li, X. Li, K.-N. Liao, P. Min, T. Liu et al., Thermally annealed anisotropic graphene aerogels and their electrically conductive epoxy composites with excellent electromagnetic interference shielding efficiencies. ACS Appl. Mater. Interfaces 8, 33230–33239 (2016).

    [172] Z. Yu, T. Dai, S. Yuan, H. Zou, P. Liu, Electromagnetic interference shielding performance of anisotropic polyimide/graphene composite aerogels. ACS Appl. Mater. Interfaces 12, 30990–31001 (2020).

    [173] A. Motaghi, A. Hrymak, G.H. Motlagh, Electrical conductivity and percolation threshold of hybrid carbon/polymer composites. J. Appl. Polym. Sci. 132, 41744 (2015).

    [174] R. Taherian, Development of an equation to model electrical conductivity of polymer-based carbon nanocomposites. ECS J. Solid State Sci. Technol. 3, M26–M38 (2014).

    [175] J. Li, J.-K. Kim, Percolation threshold of conducting polymer composites containing 3D randomly distributed graphite nanoplatelets. Compos. Sci. Technol. 67, 2114–2120 (2007).

    [176] P. Liu, Z. Jin, G. Katsukis, L.W. Drahushuk, S. Shimizu et al., Layered and scrolled nanocomposites with aligned semi-infinite graphene inclusions at the platelet limit. Science 353, 364–367 (2016).

    [177] J. Jia, X. Sun, X. Lin, X. Shen, Y.-W. Mai et al., Exceptional electrical conductivity and fracture resistance of 3D interconnected graphene foam/epoxy composites. ACS Nano 8, 5774–5783 (2014).

    [178] L. Qiu, D. Liu, Y. Wang, C. Cheng, K. Zhou et al., Mechanically robust, electrically conductive and stimuli-responsive binary network hydrogels enabled by superelastic graphene aerogels. Adv. Mater. 26, 3333–3337 (2014).

    [179] H. Hosseini, M. Kokabi, S.M. Mousavi, BC/rGO conductive nanocomposite aerogel as a strain sensor. Polymer 137, 82–96 (2018).

    [180] N. Yousefi, X. Lin, Q. Zheng, X. Shen, J.R. Pothnis et al., Simultaneous in situ reduction, self-alignment and covalent bonding in graphene oxide/epoxy composites. Carbon 59, 406–417 (2013).

    [181] N. Yousefi, M.M. Gudarzi, Q. Zheng, S.H. Aboutalebi, F. Sharif et al., Self-alignment and high electrical conductivity of ultralarge graphene oxide–polyurethane nanocomposites. J. Mater. Chem. 22, 12709–12717 (2012).

    [182] A.S. Wajid, H.S. Tanvir Ahmed, S. Das, F. Irin, A.F. Jankowski et al., High-performance pristine graphene/epoxy composites with enhanced mechanical and electrical properties. Macromol. Mater. Eng. 298, 339–347 (2013).

    [183] J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu et al., Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47, 922–925 (2009).

    [184] C. Gao, S. Zhang, F. Wang, B. Wen, C. Han et al., Graphene networks with low percolation threshold in ABS nanocomposites: selective localization and electrical and rheological properties. ACS Appl. Mater. Interfaces 6, 12252–12260 (2014).

    [185] D. Wang, X. Zhang, J.-W. Zha, J. Zhao, Z.-M. Dang et al., Dielectric properties of reduced graphene oxide/polypropylene composites with ultralow percolation threshold. Polymer 54, 1916–1922 (2013).

    [186] H. Pang, T. Chen, G. Zhang, B. Zeng, Z.-M. Li, An electrically conducting polymer/graphene composite with a very low percolation threshold. Mater. Lett. 64, 2226–2229 (2010).

    [187] L. Yang, Z. Wang, Y. Ji, J. Wang, G. Xue, Highly ordered 3D graphene-based polymer composite materials fabricated by “particle-constructing” method and their outstanding conductivity. Macromolecules 47, 1749–1756 (2014).

    [188] P. Wang, H. Chong, J. Zhang, H. Lu, Constructing 3D graphene networks in polymer composites for significantly improved electrical and mechanical properties. ACS Appl. Mater. Interfaces 9, 22006–22017 (2017).

    [189] D.-X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu et al., Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 25, 559–566 (2015).

    [190] Q. Zhang, X. Xu, H. Li, G. Xiong, H. Hu et al., Mechanically robust honeycomb graphene aerogel multifunctional polymer composites. Carbon 93, 659–670 (2015).

    [191] G. Tang, Z.-G. Jiang, X. Li, H.-B. Zhang, A. Dasari et al., Three dimensional graphene aerogels and their electrically conductive composites. Carbon 77, 592–599 (2014).

    [192] Z. Fan, F. Gong, S.T. Nguyen, H.M. Duong, Advanced multifunctional graphene aerogel–Poly (methyl methacrylate) composites: experiments and modeling. Carbon 81, 396–404 (2015).

    [193] R. Ram, M. Rahaman, A. Aldalbahi, D. Khastgir, Determination of percolation threshold and electrical conductivity of polyvinylidene fluoride (PVDF)/short carbon fiber (SCF) composites: effect of SCF aspect ratio. Polym. Int. 66, 573–582 (2017).

    [194] X. Liu, X. Sun, Z. Wang, X. Shen, Y. Wu et al., Planar porous graphene woven fabric/epoxy composites with exceptional electrical, mechanical properties, and fracture toughness. ACS Appl. Mater. Interfaces 7, 21455–21464 (2015).

    [195] X. Shen, Z. Wang, Y. Wu, X. Liu, Y.-B. He et al., A three-dimensional multilayer graphene web for polymer nanocomposites with exceptional transport properties and fracture resistance. Mater. Horiz. 5, 275–284 (2018).

    [196] X.-Y. Qi, D. Yan, Z. Jiang, Y.-K. Cao, Z.-Z. Yu et al., Enhanced electrical conductivity in polystyrene nanocomposites at ultra-low graphene content. ACS Appl. Mater. Interfaces 3, 3130–3133 (2011).

    [197] X. Wang, H. Bai, Z. Yao, A. Liu, G. Shi, Electrically conductive and mechanically strong biomimetic chitosan/reduced graphene oxide composite films. J. Mater. Chem. 20, 9032–9036 (2010).

    [198] F.-Y. Yuan, H.-B. Zhang, X. Li, H.-L. Ma, X.-Z. Li et al., In situ chemical reduction and functionalization of graphene oxide for electrically conductive phenol formaldehyde composites. Carbon 68, 653–661 (2014).

    [199] L. Yang, W. Weng, X. Fei, L. Pan, X. Li et al., Revealing the interrelation between hydrogen bonds and interfaces in graphene/PVA composites towards highly electrical conductivity. Chem. Eng. J. 383, 123126 (2020).

    [200] V.H. Pham, T.T. Dang, S.H. Hur, E.J. Kim, J.S. Chung, Highly conductive poly(methyl methacrylate) (PMMA)-reduced graphene oxide composite prepared by self-assembly of PMMA latex and graphene oxide through electrostatic interaction. ACS Appl. Mater. Interfaces 4, 2630–2636 (2012).

    [201] P. Yang, S. Ghosh, T. Xia, J. Wang, M.A. Bissett et al., Joule heating and mechanical properties of epoxy/graphene based aerogel composite. Compos. Sci. Technol. 218, 109199 (2022).

    [202] C. Huang, J. Peng, S. Wan, Y. Du, S. Dou et al., Ultra-tough inverse artificial nacre based on epoxy-graphene by freeze-casting. Angew. Chem. Int. Ed. Engl. 58, 7636–7640 (2019).

    [203] L.-C. Tang, Y.-J. Wan, D. Yan, Y.-B. Pei, L. Zhao et al., The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon 60, 16–27 (2013).

    [204] M. Fang, Z. Zhang, J. Li, H. Zhang, H. Lu et al., Constructing hierarchically structured interphases for strong and tough epoxy nanocomposites by amine-rich graphene surfaces. J. Mater. Chem. 20, 9635–9643 (2010).

    [205] S. Chandrasekaran, N. Sato, F. Tölle, R. Mülhaupt, B. Fiedler et al., Fracture toughness and failure mechanism of graphene based epoxy composites. Compos. Sci. Technol. 97, 90–99 (2014).

    [206] L. Peng, Z. Xu, Z. Liu, Y. Guo, P. Li et al., Ultrahigh thermal conductive yet superflexible graphene films. Adv. Mater. 29, 1700589 (2017).

    [207] P. Liu, F. An, X. Lu, X. Li, P. Min et al., Highly thermally conductive phase change composites with excellent solar-thermal conversion efficiency and satisfactory shape stability on the basis of high-quality graphene-based aerogels. Compos. Sci. Technol. 201, 108492 (2021).

    [208] G. Lian, C.-C. Tuan, L. Li, S. Jiao, Q. Wang et al., Vertically aligned and interconnected graphene networks for high thermal conductivity of epoxy composites with ultralow loading. Chem. Mater. 28, 6096–6104 (2016).

    [209] J. Yang, E. Zhang, X. Li, Y. Zhang, J. Qu et al., Cellulose/graphene aerogel supported phase change composites with high thermal conductivity and good shape stability for thermal energy storage. Carbon 98, 50–57 (2016).

    [210] J. Yang, G.-Q. Qi, Y. Liu, R.-Y. Bao, Z.-Y. Liu et al., Hybrid graphene aerogels/phase change material composites: thermal conductivity, shape-stabilization and light-to-thermal energy storage. Carbon 100, 693–702 (2016).

    [211] K.M.F. Shahil, A.A. Balandin, Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett. 12, 861–867 (2012).

    [212] X. Shen, Z. Wang, Y. Wu, X. Liu, Y.-B. He et al., Multilayer graphene enables higher efficiency in improving thermal conductivities of graphene/epoxy composites. Nano Lett. 16, 3585–3593 (2016).

    [213] M. Shtein, R. Nadiv, M. Buzaglo, K. Kahil, O. Regev, Thermally conductive graphene-polymer composites: size, percolation, and synergy effects. Chem. Mater. 27, 2100–2106 (2015).

    [214] A. Li, C. Zhang, Y.-F. Zhang, RGO/TPU composite with a segregated structure as thermal interface material. Compos. Part A Appl. Sci. Manuf. 101, 108–114 (2017).

    [215] A. Gao, F. Zhao, F. Wang, G. Zhang, S. Zhao et al., Highly conductive and light-weight acrylonitrile-butadiene-styrene copolymer/reduced graphene nanocomposites with segregated conductive structure. Compos. Part A Appl. Sci. Manuf. 122, 1–7 (2019).

    [216] K.H. Kim, J.U. Jang, G.Y. Yoo, S.H. Kim, M.J. Oh et al., Enhanced electrical and thermal conductivities of polymer composites with a segregated network of graphene nanoplatelets. Materials 16, 5329 (2023).

    [217] N. Song, D. Cao, X. Luo, Q. Wang, P. Ding et al., Highly thermally conductive polypropylene/graphene composites for thermal management. Compos. Part A Appl. Sci. Manuf. 135, 105912 (2020).

    [218] H. Ji, D.P. Sellan, M.T. Pettes, X. Kong, J. Ji et al., Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage. Energy Environ. Sci. 7, 1185–1192 (2014).

    [219] Q. Yan, J. Gao, D. Chen, P. Tao, L. Chen et al., A highly orientational architecture formed by covalently bonded graphene to achieve high through-plane thermal conductivity of polymer composites. Nanoscale 14, 11171–11178 (2022).

    [220] J. Gong, Z. Liu, J. Yu, D. Dai, W. Dai et al., Graphene woven fabric-reinforced polyimide films with enhanced and anisotropic thermal conductivity. Compos. Part A Appl. Sci. Manuf. 87, 290–296 (2016).

    [221] C. Shu, H.-Y. Zhao, S. Zhao, W. Deng, P. Min et al., Highly thermally conductive phase change composites with anisotropic graphene/cellulose nanofiber hybrid aerogels for efficient temperature regulation and solar-thermal-electric energy conversion applications. Compos. Part B Eng. 248, 110367 (2023).

    [222] N. Yousefi, X. Sun, X. Lin, X. Shen, J. Jia et al., Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 26, 5480–5487 (2014).

    [223] C.A. Bashur, L.A. Dahlgren, A.S. Goldstein, Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly(D, L-lactic-co-glycolic acid) meshes. Biomaterials 27, 5681–5688 (2006).

    [224] I.C. Parrag, P.W. Zandstra, K.A. Woodhouse, Fiber alignment and coculture with fibroblasts improves the differentiated phenotype of murine embryonic stem cell-derived cardiomyocytes for cardiac tissue engineering. Biotechnol. Bioeng. 109, 813–822 (2012).

    [225] S.H. McGee, R.L. McCullough, Characterization of fiber orientation in short-fiber composites. J. Appl. Phys. 55, 1394–1403 (1984).

    [226] M. Guc, S. Levcenko, I.V. Bodnar, V. Izquierdo-Roca, X. Fontane et al., Polarized Raman scattering study of kesterite type Cu2ZnSnS4 single crystals. Sci. Rep. 6, 19414 (2016).

    [227] Z. Zhang, C.-S. Lee, W. Zhang, Vertically aligned graphene nanosheet arrays: synthesis, properties and applications in electrochemical energy conversion and storage. Adv. Energy Mater. 7, 1700678 (2017).

    [228] Y. Wu, X. Lin, X. Shen, X. Sun, X. Liu et al., Exceptional dielectric properties of chlorine-doped graphene oxide/poly (vinylidene fluoride) nanocomposites. Carbon 89, 102–112 (2015).

    [229] K. Chu, F. Wang, X.-H. Wang, D.-J. Huang, Anisotropic mechanical properties of graphene/copper composites with aligned graphene. Mater. Sci. Eng. A 713, 269–277 (2018).

    [230] Z. Li, R.J. Young, N.R. Wilson, I.A. Kinloch, C. Vallés et al., Effect of the orientation of graphene-based nanoplatelets upon the Young’s modulus of nanocomposites. Compos. Sci. Technol. 123, 125–133 (2016).

    [231] Z. Li, R.J. Young, I.A. Kinloch, N.R. Wilson, A.J. Marsden et al., Quantitative determination of the spatial orientation of graphene by polarized Raman spectroscopy. Carbon 88, 215–224 (2015).

    [232] H. Yang, H. Hu, Z. Ni, C.K. Poh, C. Cong et al., Comparison of surface-enhanced Raman scattering on graphene oxide, reduced graphene oxide and graphene surfaces. Carbon 62, 422–429 (2013).

    [233] T. Chatterjee, C.A. Mitchell, V.G. Hadjiev, R. Krishnamoorti, Oriented single-walled carbon nanotubes–poly(ethylene oxide) nanocomposites. Macromolecules 45, 9357–9363 (2012).

    [234] R. Pérez, S. Banda, Z. Ounaies, Determination of the orientation distribution function in aligned single wall nanotube polymer nanocomposites by polarized Raman spectroscopy. J. Appl. Phys. 103, 074302 (2008).

    [235] T. Liu, S. Kumar, Quantitative characterization of SWNT orientation by polarized Raman spectroscopy. Chem. Phys. Lett. 378, 257–262 (2003).

    [236] C.-S. Tsao, E.-W. Huang, M.-H. Wen, T.-Y. Kuo, S.-L. Jeng et al., Phase transformation and precipitation of an Al–Cu alloy during non-isothermal heating studied by in situ small-angle and wide-angle scattering. J. Alloys Compd. 579, 138–146 (2013).

    [237] S.A. Pabit, A.M. Katz, I.S. Tolokh, A. Drozdetski, N. Baker et al., Understanding nucleic acid structural changes by comparing wide-angle X-ray scattering (WAXS) experiments to molecular dynamics simulations. J. Chem. Phys. 144, 205102 (2016).

    [238] J. Jing, Y. Chen, S. Shi, L. Yang, P. Lambin, Facile and scalable fabrication of highly thermal conductive polyethylene/graphene nanocomposites by combining solid-state shear milling and FDM 3D-printing aligning methods. Chem. Eng. J. 402, 126218 (2020).

    [239] S. Ansari, A. Kelarakis, L. Estevez, E.P. Giannelis, Oriented arrays of graphene in a polymer matrix by in situ reduction of graphite oxide nanosheets. Small 6, 205–209 (2010).

    [240] G. Xin, T. Yao, H. Sun, S.M. Scott, D. Shao et al., Highly thermally conductive and mechanically strong graphene fibers. Science 349, 1083–1087 (2015).

    [241] Z. Xu, Y. Liu, X. Zhao, L. Peng, H. Sun et al., Ultrastiff and strong graphene fibers via full-scale synergetic defect engineering. Adv. Mater. 28, 6449–6456 (2016).

    [242] Y. Cheng, G. Cui, C. Liu, Z. Liu, L. Yan et al., Electric Current aligning component units during graphene fiber joule heating. Adv. Funct. Mater. 32, 2103493 (2022).

    [243] J.J. Hermans, P.H. Hermans, D. Vermaas, A. Weidinger, Quantitative evaluation of orientation in cellulose fibres from the X-ray fibre diagram. Recl. Trav. Chim. Pays-Bas 65, 427–447 (1946).

    [244] S. Lin, J. Tang, K. Zhang, T.S. Suzuki, Q. Wei et al., High-rate supercapacitor using magnetically aligned graphene. J. Power. Sources 482, 228995 (2021).

    [245] X. Lu, X. Feng, J.R. Werber, C. Chu, I. Zucker et al., Enhanced antibacterial activity through the controlled alignment of graphene oxide nanosheets. Proc. Natl. Acad. Sci. U.S.A. 114, E9793–E9801 (2017).

    [246] L. Wu, M. Ohtani, M. Takata, A. Saeki, S. Seki et al., Magnetically induced anisotropic orientation of graphene oxide locked by in situ hydrogelation. ACS Nano 8, 4640–4649 (2014).

    [247] X. Wang, W. Yu, L. Wang, H. Xie, Vertical orientation graphene/MXene hybrid phase change materials with anisotropic properties, high enthalpy, and photothermal conversion. Sci. China Technol. Sci. 65, 882–892 (2022).

    [248] C. Shu, H.-Y. Zhao, X.-H. Lu, P. Min, Y. Zhang et al., High-quality anisotropic graphene aerogels and their thermally conductive phase change composites for efficient solar–thermal–electrical energy conversion. ACS Sustain. Chem. Eng. 11, 11991–12003 (2023).

    [249] H. Ren, M. Tang, B. Guan, K. Wang, J. Yang et al., Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion. Adv. Mater. 29, 1702590 (2017).

    [250] K.-T. Lin, H. Lin, T. Yang, B. Jia, Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion. Nat. Commun. 11, 1389 (2020).

    [251] K. Sun, H. Dong, Y. Kou, H. Yang, H. Liu et al., Flexible graphene aerogel-based phase change film for solar-thermal energy conversion and storage in personal thermal management applications. Chem. Eng. J. 419, 129637 (2021).

    [252] Z. Luo, D. Yang, J. Liu, H.-Y. Zhao, T. Zhao et al., Nature-inspired solar-thermal gradient reduced graphene oxide aerogel-based bilayer phase change composites for self-adaptive personal thermal management. Adv. Funct. Mater. 33, 2212032 (2023).

    [253] G. Qi, J. Yang, R. Bao, D. Xia, M. Cao et al., Hierarchical graphene foam-based phase change materials with enhanced thermal conductivity and shape stability for efficient solar-to-thermal energy conversion and storage. Nano Res. 10, 802–813 (2017).

    [254] J. Feng, X. Liu, F. Lin, S. Duan, K. Zeng et al., Aligned channel Gelatin@nanoGraphite aerogel supported form-stable phase change materials for solar-thermal energy conversion and storage. Carbon 201, 756–764 (2023).

    [255] X. Wu, L. Tang, S. Zheng, Y. Huang, J. Yang et al., Hierarchical unidirectional graphene aerogel/polyaniline composite for high performance supercapacitors. J. Power. Sources 397, 189–195 (2018).

    [256] Q. Huang, S. Ni, M. Jiao, X. Zhong, G. Zhou et al., Aligned carbon-based electrodes for fast-charging batteries: a review. Small 17, e2007676 (2021).

    [257] Z.P. Cano, D. Banham, S. Ye, A. Hintennach, J. Lu et al., Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 3, 279–289 (2018).

    [258] J.B. Goodenough, K.-S. Park, The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013).

    [259] G.-L. Zhu, C.-Z. Zhao, J.-Q. Huang, C. He, J. Zhang et al., Fast charging lithium batteries: recent progress and future prospects. Small 15, e1805389 (2019).

    [260] K.-H. Chen, M.J. Namkoong, V. Goel, C. Yang, S. Kazemiabnavi et al., Efficient fast-charging of lithium-ion batteries enabled by laser-patterned three-dimensional graphite anode architectures. J. Power. Sources 471, 228475 (2020).

    [261] G. Tan, L. Chong, R. Amine, J. Lu, C. Liu et al., Toward highly efficient electrocatalyst for Li-O2 batteries using biphasic N-doping Cobalt@Graphene multiple-capsule heterostructures. Nano Lett. 17, 2959–2966 (2017).

    [262] J. Zhou, M. Xie, F. Wu, G. Wei, Y. Mei et al., Toward uniform Li plating/stripping by optimizing Li-ion transport and nucleation of engineered graphene aerogel. Chem. Eng. J. 427, 130967 (2022).

    [263] L. Dong, L. Zhang, S. Lin, Z. Chen, Y. Wang et al., Building vertically-structured, high-performance electrodes by interlayer-confined reactions in accordion-like, chemically expanded graphite. Nano Energy 70, 104482 (2020).

    [264] H. Chen, A. Pei, J. Wan, D. Lin, R. Vilá et al., Tortuosity effects in lithium-metal host anodes. Joule 4, 938–952 (2020).

    [265] S. Long, Y. Feng, F. He, J. Zhao, T. Bai et al., Biomass-derived, multifunctional and wave-layered carbon aerogels toward wearable pressure sensors, supercapacitors and triboelectric nanogenerators. Nano Energy 85, 105973 (2021).

    [266] J.D. Afroze, L. Tong, M.J. Abden, Y. Chen, Multifunctional hierarchical graphene-carbon fiber hybrid aerogels for strain sensing and energy storage. Adv. Compos. Hybrid Mater. 6, 18 (2022).

    [267] P.-X. Li, G.-Z. Guan, X. Shi, L. Lu, Y.-C. Fan et al., Bidirectionally aligned MXene hybrid aerogels assembled with MXene nanosheets and microgels for supercapacitors. Rare Met. 42, 1249–1260 (2023).

    [268] Y. Zhao, Y. Alsaid, B. Yao, Y. Zhang, B. Zhang et al., Wood-inspired morphologically tunable aligned hydrogel for high-performance flexible all-solid-state supercapacitors. Adv. Funct. Mater. 30, 1909133 (2020).

    [269] Y. Yoon, K. Lee, S. Kwon, S. Seo, H. Yoo et al., Vertical alignments of graphene sheets spatially and densely piled for fast ion diffusion in compact supercapacitors. ACS Nano 8, 4580–4590 (2014).

    [270] Z. Peng, C. Yu, W. Zhong, Facile preparation of a 3D porous aligned graphene-based wall network architecture by confined self-assembly with shape memory for artificial muscle, pressure sensor, and flexible supercapacitor. ACS Appl. Mater. Interfaces 14, 17739–17753 (2022).

    [271] H. Liu, T. Xu, C. Cai, K. Liu, W. Liu et al., Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose-based composite carbon aerogels for compressive supercapacitor and strain sensor. Adv. Funct. Mater. 32, 2270149 (2022).

    [272] L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008).

    [273] G. Li, D. Dong, G. Hong, L. Yan, X. Zhang et al., High-efficiency cryo-thermocells assembled with anisotropic holey graphene aerogel electrodes and a eutectic redox electrolyte. Adv. Mater. 31, e1901403 (2019).

    [274] J. Duan, B. Yu, L. Huang, B. Hu, M. Xu et al., Liquid-state thermocells: opportunities and challenges for low-grade heat harvesting. Joule 5, 768–779 (2021).

    [275] E. Zhu, K. Pang, Y. Chen, S. Liu, X. Liu et al., Ultra-stable graphene aerogels for electromagnetic interference shielding. Sci. China Mater. 66, 1106–1113 (2023).

    [276] T. Chen, M. Li, L. Zhou, X. Ding, D. Lin et al., Bio-inspired biomass-derived carbon aerogels with superior mechanical property for oil–water separation. ACS Sustain. Chem. Eng. 8, 6458–6465 (2020).

    [277] C. Dai, W. Sun, Z. Xu, J. Liu, J. Chen et al., Assembly of ultralight dual network graphene aerogel with applications for selective oil absorption. Langmuir 36, 13698–13707 (2020).

    [278] X. Cao, J. Zhang, S. Chen, R.J. Varley, K. Pan, 1D/2D nanomaterials synergistic, compressible, and response rapidly 3D graphene aerogel for piezoresistive sensor. Adv. Funct. Mater. 30, 2003618 (2020).

    [279] X. Peng, K. Wu, Y. Hu, H. Zhuo, Z. Chen et al., A mechanically strong and sensitive CNT/rGO–CNF carbon aerogel for piezoresistive sensors. J. Mater. Chem. A 6, 23550–23559 (2018).

    [280] Q. Zheng, J.-H. Lee, X. Shen, X. Chen, J.-K. Kim, Graphene-based wearable piezoresistive physical sensors. Mater. Today 36, 158–179 (2020).

    [281] X. He, Q. Liu, W. Zhong, J. Chen, D. Sun et al., Strategy of constructing light-weight and highly compressible graphene-based aerogels with an ordered unique configuration for wearable piezoresistive sensors. ACS Appl. Mater. Interfaces 11, 19350–19362 (2019).

    [282] X. Chen, D. Lai, B. Yuan, M.-L. Fu, Fabrication of superelastic and highly conductive graphene aerogels by precisely “unlocking” the oxygenated groups on graphene oxide sheets. Carbon 162, 552–561 (2020).

    [283] Q. Wu, Y. Qiao, R. Guo, S. Naveed, T. Hirtz et al., Triode-mimicking graphene pressure sensor with positive resistance variation for physiology and motion monitoring. ACS Nano 14, 10104–10114 (2020).

    [284] C. Long, X. Xie, J. Fu, Q. Wang, H. Guo et al., Supercapacitive brophene-graphene aerogel as elastic-electrochemical dielectric layer for sensitive pressure sensors. J. Colloid Interface Sci. 601, 355–364 (2021).

    [285] H. Tian, Y. Shu, X.F. Wang, M.A. Mohammad, Z. Bie et al., A graphene-based resistive pressure sensor with record-high sensitivity in a wide pressure range. Sci. Rep. 5, 8603 (2015).

    [286] J. Xiao, Y. Tan, Y. Song, Q. Zheng, A flyweight and superelastic graphene aerogel as a high-capacity adsorbent and highly sensitive pressure sensor. J. Mater. Chem. A 6, 9074–9080 (2018).

    [287] T. Zhai, L. Verdolotti, S. Kacilius, P. Cerruti, G. Gentile et al., High piezo-resistive performances of anisotropic composites realized by embedding rGO-based chitosan aerogels into open cell polyurethane foams. Nanoscale 11, 8835–8844 (2019).

    [288] T. Zhai, J. Li, X. Wang, W. Yan, C. Zhang et al., Carbon-based aerogel in three-dimensional polyurethane scaffold: the effect of in situ unidirectional aerogel growth on piezoresistive properties. Sens. Actuat. A Phys. 333, 113306 (2022).

    [289] H. Zhuo, Y. Hu, X. Tong, Z. Chen, L. Zhong et al., A supercompressible, elastic, and bendable carbon aerogel with ultrasensitive detection limits for compression strain, pressure, and bending angle. Adv. Mater. 30, e1706705 (2018).

    [290] S. Wu, S. Tian, R. Jian, L. Zhou, T. Luo et al., Bio-inspired salt-fouling resistant graphene evaporators for solar desalination of hypersaline brines. Desalination 546, 116197 (2023).

    [291] H. Zhang, H. Liu, S. Chen, X. Zhao, F. Yang et al., Preparation of three-dimensional graphene-based sponge as photo-thermal conversion material to desalinate seawater. Chem. Res. Chin. Univ. 38, 1425–1434 (2022).

    [292] X. Meng, J. Yang, S. Ramakrishna, Y. Sun, Y. Dai, Gradient-aligned Au/graphene meshes with confined heat at multiple levels for solar evaporation and anti-gravity catalytic conversion. J. Mater. Chem. A 8, 16570–16581 (2020).

    [293] Y. Hu, H. Yao, Q. Liao, T. Lin, H. Cheng et al., The promising solar-powered water purification based on graphene functional architectures. EcoMat 4, e12205 (2022).

    [294] L. Chen, J. Wei, Q. Tian, Z. Han, L. Li et al., Dual-functional graphene oxide-based photothermal materials with aligned channels and oleophobicity for efficient solar steam generation. Langmuir 37, 10191–10199 (2021).

    [295] Z. Luo, X. Wang, D. Yang, S. Zhang, T. Zhao et al., Photothermal hierarchical carbon nanotube/reduced graphene oxide microspherical aerogels with radially orientated microchannels for efficient cleanup of crude oil spills. J. Colloid Interface Sci. 570, 61–71 (2020).

    [296] X. Ming, A. Guo, Q. Zhang, Z. Guo, F. Yu et al., 3D macroscopic graphene oxide/MXene architectures for multifunctional water purification. Carbon 167, 285–295 (2020).

    [297] M. Jin, Z. Wu, F. Guan, D. Zhang, B. Wang et al., Hierarchically designed three-dimensional composite structure on a cellulose-based solar steam generator. ACS Appl. Mater. Interfaces 14, 12284–12294 (2022).

    [298] X. Zhao, X.-J. Zha, L.-S. Tang, J.-H. Pu, K. Ke et al., Self-assembled core-shell polydopamine@MXene with synergistic solar absorption capability for highly efficient solar-to-vapor generation. Nano Res. 13, 255–264 (2020).

    [299] Z. Lei, X. Sun, S. Zhu, K. Dong, X. Liu et al., Nature inspired MXene-decorated 3D honeycomb-fabric architectures toward efficient water desalination and salt harvesting. Nano-Micro Lett. 14, 10 (2021).

    [300] F. Wu, S. Qiang, X.-D. Zhu, W. Jiao, L. Liu et al., Fibrous MXene aerogels with tunable pore structures for high-efficiency desalination of contaminated seawater. Nano-Micro Lett. 15, 71 (2023).

    [301] Q. Zhang, G. Yi, Z. Fu, H. Yu, S. Chen et al., Vertically aligned Janus MXene-based aerogels for solar desalination with high efficiency and salt resistance. ACS Nano 13, 13196–13207 (2019).

    [302] H. Gao, N. Bing, Z. Bao, H. Xie, W. Yu, Sandwich-structured MXene/wood aerogel with waste heat utilization for continuous desalination. Chem. Eng. J. 454, 140362 (2023).

    [303] Z. Zheng, H. Liu, D. Wu, X. Wang, Polyimide/MXene hybrid aerogel-based phase-change composites for solar-driven seawater desalination. Chem. Eng. J. 440, 135862 (2022).

    [304] H. Zhang, X. Shen, E. Kim, M. Wang, J.-H. Lee et al., Integrated water and thermal managements in bioinspired hierarchical MXene aerogels for highly efficient solar-powered water evaporation. Adv. Funct. Mater. 32, 2111794 (2022).

    [305] W. Li, X. Li, W. Chang, J. Wu, P. Liu et al., Vertically aligned reduced graphene oxide/Ti3C2Tx MXene hybrid hydrogel for highly efficient solar steam generation. Nano Res. 13, 3048–3056 (2020).

    [306] C. Wu, S. Zhou, C. Wang, J. Zhang, Z. Yang et al., Aerogels based on MXene nanosheet/reduced graphene oxide composites with vertically aligned channel structures for solar-driven vapor generation. ACS Appl. Nano Mater. 6, 4455–4464 (2023).

    [307] X. Hu, J. Zhu, Tailoring aerogels and related 3D macroporous monoliths for interfacial solar vapor generation. Adv. Funct. Mater. 30, 1907234 (2020).

    [308] Z. Yin, H. Wang, M. Jian, Y. Li, K. Xia et al., Extremely black vertically aligned carbon nanotube arrays for solar steam generation. ACS Appl. Mater. Interfaces 9, 28596–28603 (2017).

    [309] H.-J. Zhan, J.-F. Chen, H.-Y. Zhao, L. Jiao, J.-W. Liu et al., Biomimetic difunctional carbon-nanotube-based aerogels for efficient steam generation. ACS Appl. Nano Mater. 3, 4690–4698 (2020).

    [310] P. Mu, Z. Zhang, W. Bai, J. He, H. Sun et al., Superwetting monolithic hollow-carbon-nanotubes aerogels with hierarchically nanoporous structure for efficient solar steam generation. Adv. Energy Mater. 9, 1802158 (2019).

    [311] B. Zhu, H. Kou, Z. Liu, Z. Wang, D.K. Macharia et al., Flexible and washable CNT-embedded PAN nonwoven fabrics for solar-enabled evaporation and desalination of seawater. ACS Appl. Mater. Interfaces 11, 35005–35014 (2019).

    [312] S. Xu, J. Zhang, Vertically aligned graphene for thermal interface materials. Small Struct. 1, 2000034 (2020).

    [313] F. An, X. Li, P. Min, H. Li, Z. Dai et al., Highly anisotropic graphene/boron nitride hybrid aerogels with long-range ordered architecture and moderate density for highly thermally conductive composites. Carbon 126, 119–127 (2018).

    [314] G. Yang, Y. Yang, T. Chen, J. Wang, L. Ma et al., Graphene/MXene composite aerogels reinforced by polyimide for pressure sensing. ACS Appl. Nano Mater. 5, 1068–1077 (2022).

    [315] B. Wicklein, A. Kocjan, G. Salazar-Alvarez, F. Carosio, G. Camino et al., Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat. Nanotechnol. 10, 277–283 (2015).

    [316] Y. Zhang, Y. Li, Q. Lei, X. Fang, H. Xie et al., Tightly-packed fluorinated graphene aerogel/polydimethylsiloxane composite with excellent thermal management properties. Compos. Sci. Technol. 220, 109302 (2022).

    [317] Y.R. Jeong, H. Park, S.W. Jin, S.Y. Hong, S.-S. Lee et al., Highly stretchable and sensitive strain sensors using fragmentized graphene foam. Adv. Funct. Mater. 25, 4228–4236 (2015).

    [318] C. Hu, J. Xue, L. Dong, Y. Jiang, X. Wang et al., Scalable preparation of multifunctional fire-retardant ultralight graphene foams. ACS Nano 10, 1325–1332 (2016).

    [319] T. Xue, W. Fan, X. Zhang, X. Zhao, F. Yang et al., Layered double hydroxide/graphene oxide synergistically enhanced polyimide aerogels for thermal insulation and fire-retardancy. Compos. Part B Eng. 219, 108963 (2021).

    [320] M. Šilhavík, P. Kumar, Z.A. Zafar, R. Král, P. Zemenová et al., High-temperature fire resistance and self-extinguishing behavior of cellular graphene. ACS Nano 16, 19403–19411 (2022).

    [321] B.-X. Li, Z. Luo, W.-G. Yang, H. Sun, Y. Ding et al., Adaptive and adjustable MXene/reduced graphene oxide hybrid aerogel composites integrated with phase-change material and thermochromic coating for synchronous visible/infrared camouflages. ACS Nano 17, 6875–6885 (2023).

    [322] S. Hou, X. Wu, Y. Lv, W. Jia, J. Guo et al., Ultralight, highly elastic and bioinspired capillary-driven graphene aerogels for highly efficient organic pollutants absorption. Appl. Surf. Sci. 509, 144818 (2020).

    [323] J. Wu, B. Liang, J. Huang, S. Xu, Z. Yan, Honeycomb-like rGO aerogels via oriented freeze-drying as efficient organic solvents removing absorbents. Mater. Lett. 318, 132164 (2022).

    [324] W. Wan, F. Zhang, S. Yu, R. Zhang, Y. Zhou, Hydrothermal formation of graphene aerogel for oil sorption: the role of reducing agent, reaction time and temperature. New J. Chem. 40, 3040–3046 (2016).

    [325] H. Liu, Y. Xu, D. Han, J.-P. Cao, F. Zhao et al., Leaf-structured carbon nanotubes/graphene aerogel and the composites with polydimethylsiloxane for electromagnetic interference shielding. Mater. Lett. 313, 131751 (2022).

    [326] Y. Chen, H. Zhang, G. Zeng, Tunable and high performance electromagnetic absorber based on ultralight 3D graphene foams with aligned structure. Carbon 140, 494–503 (2018).

    [327] Z. Zeng, C. Wang, Y. Zhang, P. Wang, S.I. Seyed Shahabadi et al., Ultralight and highly elastic graphene/lignin-derived carbon nanocomposite aerogels with ultrahigh electromagnetic interference shielding performance. ACS Appl. Mater. Interfaces 10, 8205–8213 (2018).

    [328] Z. Zeng, Y. Zhang, X.Y.D. Ma, S.I.S. Shahabadi, B. Che et al., Biomass-based honeycomb-like architectures for preparation of robust carbon foams with high electromagnetic interference shielding performance. Carbon 140, 227–236 (2018).

    [329] Q. Zhang, Z. Du, M. Hou, Z. Ding, X. Huang et al., Ultralight, anisotropic, and self-supported graphene/MWCNT aerogel with high-performance microwave absorption. Carbon 188, 442–452 (2022).

    [330] S. Zhao, H.-B. Zhang, J.-Q. Luo, Q.-W. Wang, B. Xu et al., Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12, 11193–11202 (2018).

    [331] L. Liang, Q. Li, X. Yan, Y. Feng, Y. Wang et al., Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 15, 6622–6632 (2021).

    Ying Wu, Chao An, Yaru Guo, Yangyang Zong, Naisheng Jiang, Qingbin Zheng, Zhong-Zhen Yu. Highly Aligned Graphene Aerogels for Multifunctional Composites[J]. Nano-Micro Letters, 2024, 16(1): 118
    Download Citation