• Acta Physica Sinica
  • Vol. 69, Issue 6, 064702-1 (2020)
Xue-Feng Shen, Yu Cao, Jun-Feng Wang, and Hai-Long Liu*
Author Affiliations
  • School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
  • show less
    DOI: 10.7498/aps.69.20191682 Cite this Article
    Xue-Feng Shen, Yu Cao, Jun-Feng Wang, Hai-Long Liu. Numerical simulation of shear-thinning droplet impact on surfaces with different wettability[J]. Acta Physica Sinica, 2020, 69(6): 064702-1 Copy Citation Text show less
    Computation domain for numerical simulation.
    Fig. 1. Computation domain for numerical simulation.
    Grid generation of computation domain.
    Fig. 2. Grid generation of computation domain.
    Comparisons between simulation results in this work and phase-field simulation results[33].
    Fig. 3. Comparisons between simulation results in this work and phase-field simulation results[33].
    Comparisons between numerical simulation in this work and experiment results[11], the left half of each image is obtained from the experiment, while the right half is the snapshots from our simulation.
    Fig. 4. Comparisons between numerical simulation in this work and experiment results[11], the left half of each image is obtained from the experiment, while the right half is the snapshots from our simulation.
    Mesh convergence study of droplet impact on solid surfaces
    Fig. 5. Mesh convergence study of droplet impact on solid surfaces
    Variation of shear viscosity with shear rate at different power-law index.
    Fig. 6. Variation of shear viscosity with shear rate at different power-law index.
    Dimensionless diameter of droplet spread varying with dimensionless time at different power-law index (We = 4.53).
    Fig. 7. Dimensionless diameter of droplet spread varying with dimensionless time at different power-law index (We = 4.53).
    Dimensionless height of droplet spread varying with dimensionless time at different power-law index (We = 4.53).
    Fig. 8. Dimensionless height of droplet spread varying with dimensionless time at different power-law index (We = 4.53).
    Process of droplet impact on surface at different power-law index: (a) m = 0.85, Ren = 24.37, We = 4.53; (b) m = 0.80, Ren = 29.50, We = 4.53.
    Fig. 9. Process of droplet impact on surface at different power-law index: (a) m = 0.85, Ren = 24.37, We = 4.53; (b) m = 0.80, Ren = 29.50, We = 4.53.
    Dimensionless diameter of droplet spread varying with dimensionless time at different power-law index (We = 4.53, Ren = 13.75 (m = 1.00), Ren = 24.37 (m = 0.85))
    Fig. 10. Dimensionless diameter of droplet spread varying with dimensionless time at different power-law index (We = 4.53, Ren = 13.75 (m = 1.00), Ren = 24.37 (m = 0.85))
    Dimensionless height of droplet spread varying with dimensionless time at different power-law index (We = 4.53, Ren = 13.75 (m = 1.00), Ren = 24.37 (m = 0.85)).
    Fig. 11. Dimensionless height of droplet spread varying with dimensionless time at different power-law index (We = 4.53, Ren = 13.75 (m = 1.00), Ren = 24.37 (m = 0.85)).
    Process of droplet impact on surface at different power-law index: (a) m = 1, Ren = 13.75, We = 4.53; (b) m = 0.80, Ren = 29.50, We = 4.53.
    Fig. 12. Process of droplet impact on surface at different power-law index: (a) m = 1, Ren = 13.75, We = 4.53; (b) m = 0.80, Ren = 29.50, We = 4.53.
    Comparison of between model prediction values and simulation data.
    Fig. 13. Comparison of between model prediction values and simulation data.
    参数符号/单位数值
    重新初始化参数$\gamma /{\rm{m}} \cdot {{\rm{s}}^{ - 1}}$1
    界面厚度$\varepsilon /\text{μm}$$5 \times {10^{ - 2}}$
    气体密度${\rho _1}/{\rm{kg}} \cdot {{\rm{m}}^{ - {\rm{3}}}}$1.2
    气体黏度${\eta _1}{\rm{/Pa}} \cdot {\rm{s}}$$2 \times {10^{ - 5}}$
    液体密度${\rho _2}/{\rm{kg}} \cdot {{\rm{m}}^{ - {\rm{3}}}}$1000
    液体黏度${\eta _2}{\rm{/Pa}} \cdot {\rm{s}}$$8.9 \times {10^{ - 4}}$
    温度T/℃ 25
    液滴初始直径${D_0}/{\text{μ} m }$55
    液滴撞击速度uz$/{\rm{m}} \cdot {{\rm{s}}^{ - 1}}$2.45
    接触角$\theta /{(^ \circ })$55
    气液界面张力$\sigma /{\rm{mN}} \cdot {{\rm{m}}^{ - 1}}$72.8
    Table 1.

    Symbols and constants in numerical simulation

    数值模拟参数设置

    模型出处方程均方根误差
    Jones[37]$D_{\max }^* = {({\rm{4/3} }Re_{\rm{n} } ^{1/4})^{1/2} }$0.20
    Madejski[38]$D_{\max }^* = Re_{\rm{n} } ^{1/5}$0.31
    Pasandideh-Fard等[39]$D_{\max }^* = 0.5 Re_{\rm{n} } ^{1/4}$0.64
    Scheller和Bousfield[40]$D_{\max }^* = 0.61{(R{e_{\rm{n}}}W{e^{1{\rm{/}}2}}{\rm{)}}^{0.166}}$0.65
    Roisman[41]$D_{\max }^* = 0.87 Re_{\rm{n} } ^{1/5} - {\rm{0} }{\rm{.40} }Re_{\rm{n} }^{2/5}W{e^{ - 1/2} }$0.97
    Luu和Forterre[8]$D_{\max }^* = Re_{\rm{n} } ^{1/(2 m + 3)}$0.44
    Andrade等[14]$D_{\max }^* = 1.28 + 0.071 W{e^{1/4} }Re_{\rm{n} } ^{1/4}$0.43
    本文预测模型$D_{\max }^* = Re_{\rm{n} } ^{0.17} = {\left[ {\rho D_0^mV_0^{2 - m}/k} \right]^{0.17} }$0.06
    Table 2.

    Prediction models of maximum dimensionless factor.

    最大无量纲直径预测模型

    Xue-Feng Shen, Yu Cao, Jun-Feng Wang, Hai-Long Liu. Numerical simulation of shear-thinning droplet impact on surfaces with different wettability[J]. Acta Physica Sinica, 2020, 69(6): 064702-1
    Download Citation