• High Power Laser and Particle Beams
  • Vol. 33, Issue 11, 111012 (2021)
Yujia Li1、2, Ke’nan Wu1、2、*, Yuqi Jin1、2, Zengqiang Wang1、2, Dongjian Zhou1, and Feng Wang1
Author Affiliations
  • 1Key Laboratory of Chemical Laser, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.11884/HPLPB202133.210371 Cite this Article
    Yujia Li, Ke’nan Wu, Yuqi Jin, Zengqiang Wang, Dongjian Zhou, Feng Wang. Feasibility of Fe2+: ZnSe laser pumped by continuous wave HF laser[J]. High Power Laser and Particle Beams, 2021, 33(11): 111012 Copy Citation Text show less

    Abstract

    In view of the key bottleneck that Fe2+: ZnSe laser lacks effective high-power pumping source at present, the technical route of using a continuous wave HF chemical laser to pump Fe2+: ZnSe to achieve laser output in 4 μm band is proposed. The feasibility of this technical route is investigated both experimentally and theoretically. The output of a continuous wave HF chemical laser pumped Fe2+: ZnSe laser at watt level is obtained for the first time. The output power is about 1.7 W, the central wavelength is 4.18 μm, and the lasing lasts about 2 s.
    $ \dfrac{1}{r}\dfrac{{\rm{d}}}{{{\rm{d}}r}}\left[ {r\dfrac{{{\rm{d}}T(r,{\textit{z}})}}{{{\rm{d}}r}}} \right] + \dfrac{{{{\rm{d}}^2}T(r,{\textit{z}})}}{{{\rm{d}}{{\textit{z}}^2}}} = - \dfrac{Q}{k} $(1)

    View in Article

    $ \dfrac{{{\rm{d}}{n_2}}}{{{\rm{d}}t}} = - {n_2}{\sigma _{21}}vN - \dfrac{{{n_2}}}{{{\tau _2}}} + \dfrac{{{\lambda _{\rm{p}}}{I_{\rm{p}}}}}{{hcL}} $(2)

    View in Article

    $ g = {\sigma _{21}}{\tau _2}\dfrac{{{\lambda _{\rm{p}}}{I_{\rm{p}}}}}{{hcL}}\dfrac{1}{{\left( {\dfrac{{{I_{\text{ν}} }}}{{{I_{\rm{s}}}}} + 1} \right)}} = \dfrac{{{\sigma _{21}}}}{{{\sigma _{\rm{a}}}}}\dfrac{{{I_{\rm{p}}}}}{{{I_{{\rm{sa}}}}}}\dfrac{1}{{L\left( {\dfrac{{{I_{{\text{ν}}} }}}{{{I_{\rm{s}}}}} + 1} \right)}} $(3)

    View in Article

    $ {I_\nu } = \left( {\dfrac{{{\sigma _{21}}}}{{{\sigma _{\rm{a}}}}}\dfrac{{{I_{\rm{p}}}}}{{{I_{{\rm{sa}}}}}}\dfrac{1}{{\ln M + \beta L}} - 1} \right){I_{\rm{s}}} = \left( {1 + \dfrac{1}{{{M^2}}}} \right){I_ + } $(4)

    View in Article

    $ {I_{{\rm{out}}}} = \left( {1 - \dfrac{1}{{{M^2}}}} \right){I_ + } = \left( {1 - \dfrac{2}{{{M^2} + 1}}} \right)\left( {\dfrac{{{\sigma _{21}}}}{{{\sigma _{\rm{a}}}}}\dfrac{{{I_{\rm{p}}}}}{{{I_{{\rm{sa}}}}}}\dfrac{1}{{\ln M + \beta L}} - 1} \right){I_{\rm{s}}} $(5)

    View in Article

    $ {\eta _{{\rm{optics}}}} = {I_{{\rm{out}}}}/{I_{\rm{p}}} = \left( {1 - \dfrac{2}{{{M^2} + 1}}} \right)\left( {\dfrac{{{\sigma _{21}}}}{{{\sigma _{\rm{a}}}}}\dfrac{1}{{{I_{{\rm{sa}}}}}}\dfrac{1}{{\ln M + \beta L}} - \dfrac{1}{{{I_{\rm{p}}}}}} \right){I_{\rm{s}}} $(6)

    View in Article

    $ \dfrac{{\eta {I_{\rm{p}}}}}{{{L_{\rm{m}}}}} = {{3\Re b} \mathord{\left/ {\vphantom {{3\Re b} {L_m^2}}} \right. } {L_m^2}} $(7)

    View in Article

    $ \Re = k\left( {1 - \mu } \right){{{\sigma _{{\rm{s}},{\rm{fract}}}}} / { {\gamma E} }} $(8)

    View in Article

    $ {g_0}D < \phi $(9)

    View in Article

    $ {P_{\max }} = \dfrac{{{\text{π}} {{3.5}^2}}}{4}L_{\rm{m}}^2{\left( {\dfrac{{{\sigma _{\rm{a}}}}}{{{\sigma _{21}}}}\dfrac{{{I_{{\rm{sa}}}}}}{{{I_{\rm{p}}}}}} \right)^2}\left( {1 - \dfrac{2}{{{M^2} + 1}}} \right)\left( {\dfrac{{{\sigma _{21}}}}{{{\sigma _{\rm{a}}}}}\dfrac{{{I_{\rm{p}}}}}{{{I_{{\rm{sa}}}}}}\dfrac{1}{{\ln M + \beta L}} - 1} \right){I_{\rm{s}}} $(10)

    View in Article

    Yujia Li, Ke’nan Wu, Yuqi Jin, Zengqiang Wang, Dongjian Zhou, Feng Wang. Feasibility of Fe2+: ZnSe laser pumped by continuous wave HF laser[J]. High Power Laser and Particle Beams, 2021, 33(11): 111012
    Download Citation