• Acta Optica Sinica (Online)
  • Vol. 2, Issue 1, 0110001 (2025)
Hanyu Wang, Mengjian Zhu, Chucai Guo***, Zhihong Zhu**, and Biao Yang*
Author Affiliations
  • College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, Hunan , China
  • show less
    DOI: 10.3788/AOSOL240455 Cite this Article Set citation alerts
    Hanyu Wang, Mengjian Zhu, Chucai Guo, Zhihong Zhu, Biao Yang. Experimental Progress on Optical Weyl Metamaterials and Fermi Arcs (Invited)[J]. Acta Optica Sinica (Online), 2025, 2(1): 0110001 Copy Citation Text show less
    References

    [1] Bansil A, Lin H, Das T. Colloquium: topological band theory[J]. Reviews of Modern Physics, 88, 021004(2016).

    [2] Hasan M Z, Kane C L. Colloquium: topological insulators[J]. Reviews of Modern Physics, 82, 3045-3067(2010).

    [3] Qi X L, Zhang S C. Topological insulators and superconductors[J]. Reviews of Modern Physics, 83, 1057-1110(2011).

    [4] Bernevig B A, Hughes T L, Zhang S C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells[J]. Science, 314, 1757-1761(2006).

    [5] Wieder B J, Bradlyn B, Cano J et al. Topological materials discovery from crystal symmetry[J]. Nature Reviews Materials, 7, 196-216(2022).

    [6] Narang P, Garcia C A C, Felser C. The topology of electronic band structures[J]. Nature Materials, 20, 293-300(2021).

    [7] Zhang H J, Liu C X, Qi X L et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface[J]. Nature Physics, 5, 438-442(2009).

    [8] Fu L, Kane C L, Mele E J. Topological insulators in three dimensions[J]. Physical Review Letters, 98, 106803(2007).

    [9] Weng H M, Liang Y Y, Xu Q N et al. Topological node-line semimetal in three-dimensional graphene networks[J]. Physical Review B, 92, 045108(2015).

    [10] Weyl H. Gravitation and the electron[J]. Proceedings of the National Academy of Sciences of the United States of America, 15, 323-334(1929).

    [11] Yan B H, Felser C. Topological materials: Weyl semimetals[J]. Annual Review of Condensed Matter Physics, 8, 337-354(2017).

    [12] Hasan M Z, Xu S Y, Belopolski I et al. Discovery of Weyl fermion semimetals and topological Fermi arc states[J]. Annual Review of Condensed Matter Physics, 8, 289-309(2017).

    [13] Burkov A A. Weyl metals[J]. Annual Review of Condensed Matter Physics, 9, 359-378(2018).

    [14] Guo C, Asadchy V S, Zhao B et al. Light control with Weyl semimetals[J]. eLight, 3, 2(2023).

    [15] Hasan M Z, Chang G Q, Belopolski I et al. Weyl, Dirac and high-fold chiral fermions in topological quantum matter[J]. Nature Reviews Materials, 6, 784-803(2021).

    [16] Wang Z J, Sun Y, Chen X Q et al. Dirac semimetal and topological phase transitions in A3Bi (A=Na, K, Rb)[J]. Physical Review B, 85, 195320(2012).

    [17] Young S M, Zaheer S, Teo J C Y et al. Dirac semimetal in three dimensions[J]. Physical Review Letters, 108, 140405(2012).

    [18] Tabert C J, Carbotte J P, Nicol E J. Optical and transport properties in three-dimensional Dirac and Weyl semimetals[J]. Physical Review B, 93, 085426(2016).

    [19] Xu G, Weng H M, Wang Z J et al. Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4[J]. Physical Review Letters, 107, 186806(2011).

    [20] Burkov A A, Balents L. Weyl semimetal in a topological insulator multilayer[J]. Physical Review Letters, 107, 127205(2011).

    [21] Huang S M, Xu S Y, Belopolski I et al. A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class[J]. Nature Communications, 6, 7373(2015).

    [22] Lü B Q, Xu N, Weng H M et al. Observation of Weyl nodes in TaAs[J]. Nature Physics, 11, 724-727(2015).

    [23] Lü B Q, Weng H M, Fu B B et al. Experimental discovery of Weyl semimetal TaAs[J]. Physical Review X, 5, 031013(2015).

    [24] Lü B Q, Muff S, Qian T et al. Observation of Fermi-arc spin texture in TaAs[J]. Physical Review Letters, 115, 217601(2015).

    [25] Xu S Y, Belopolski I, Sanchez D S et al. Experimental discovery of a topological Weyl semimetal state in TaP[J]. Science Advances, 1, e1501092(2015).

    [26] Xu S Y, Belopolski I, Alidoust N et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs[J]. Science, 349, 613-617(2015).

    [27] Yang H F, Yang L X, Liu Z K et al. Topological Lifshitz transitions and Fermi arc manipulation in Weyl semimetal NbAs[J]. Nature Communications, 10, 3478(2019).

    [28] Manna K, Sun Y, Muechler L et al. Heusler, Weyl and Berry[J]. Nature Reviews Materials, 3, 244-256(2018).

    [29] Arnold F, Naumann M, Wu S C et al. Chiral Weyl pockets and Fermi surface topology of the Weyl semimetal TaAs[J]. Physical Review Letters, 117, 146401(2016).

    [30] Arnold F, Shekhar C, Wu S C et al. Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP[J]. Nature Communications, 7, 11615(2016).

    [31] Armitage N P, Mele E J, Vishwanath A. Weyl and Dirac semimetals in three-dimensional solids[J]. Reviews of Modern Physics, 90, 015001(2018).

    [32] Burkov A A. Weyl metals[J]. Annual Reviews, 9, 359-378(2018).

    [33] Ilan R, Grushin A G, Pikulin D I. Pseudo-electromagnetic fields in 3D topological semimetals[J]. Nature Reviews Physics, 2, 29-41(2020).

    [34] Mathai V, Thiang G C. Global topology of Weyl semimetals and Fermi arcs[J]. Journal of Physics A, 50, 11LT01(2017).

    [35] Zhang C, Zhang Y, Lu H Z et al. Cycling Fermi arc electrons with Weyl orbits[J]. Nature Reviews Physics, 3, 660-670(2021).

    [36] Jia S, Xu S Y, Hasan M Z. Weyl semimetals, Fermi arcs and chiral anomalies[J]. Nature Materials, 15, 1140-1144(2016).

    [37] Michel F, David C. An introduction to topological insulators[J]. Comptes Redus Physique, 14, 779-815(2013).

    [38] Jiang Q D, Jiang H, Liu H W et al. Topological imbert-fedorov shift in Weyl semimetals[J]. Physical Review Letters, 115, 156602(2015).

    [39] Chistyakov V, Asadchy V, Fan S et al. Tunable magnetless optical isolation with twisted Weyl semimetals[J]. Nanophotonics, 12, 3333-3340(2023).

    [40] Hou Z, Zhou Y F, Yang N X et al. Chirality-dependent electron transport in Weyl semimetal p-n-p junctions[J]. Communications Physics, 2, 86(2019).

    [41] Hübener H, Sentef M A, De Giovannini U et al. Creating stable Floquet-Weyl semimetals by laser-driving of 3D Dirac materials[J]. Nature Communications, 8, 13940(2017).

    [42] Haldane F D M, Raghu S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry[J]. Physical Review Letters, 100, 013904(2008).

    [43] Wang Z, Chong Y D, Joannopoulos J D et al. Observation of unidirectional backscattering-immune topological electromagnetic states[J]. Nature, 461, 772-775(2009).

    [44] Ozawa T, Price H M, Amo A et al. Topological photonics[J]. Reviews of Modern Physics, 91, 015006(2019).

    [45] Kim M, Jacob Z, Rho J. Recent advances in 2D, 3D and higher-order topological photonics[J]. Light: Science & Applications, 9, 130(2020).

    [46] Khanikaev A B, Shvets G. Two-dimensional topological photonics[J]. Nature Photonics, 11, 763-773(2017).

    [47] Jaibi O. Topology and geometry in a quantum condensed matter system-Weyl semimetals[D], 116(2020).

    [48] Lu L, Fu L, Joannopoulos J D et al. Weyl points and line nodes in gyroid photonic crystals[J]. Nature Photonics, 7, 294-299(2013).

    [49] Zyuzin A A, Burkov A A. Topological response in Weyl semimetals and the chiral anomaly[J]. Physical Review B, 86, 115133(2012).

    [50] Xiong J, Kushwaha S K, Liang T et al. Evidence for the chiral anomaly in the Dirac semimetal Na3Bi[J]. Science, 350, 413-416(2015).

    [51] Son D T, Spivak B Z. Chiral anomaly and classical negative magnetoresistance of Weyl metals[J]. Physical Review B, 88, 104412(2013).

    [52] Parameswaran S A, Grover T, Abanin D A et al. Probing the chiral anomaly with nonlocal transport in three-dimensional topological semimetals[J]. Physical Review X, 4, 031035(2014).

    [53] Ashby P E C, Carbotte J P. Chiral anomaly and optical absorption in Weyl semimetals[J]. Physical Review B, 89, 245121(2014).

    [54] Niemann A C, Gooth J, Wu S C et al. Chiral magnetoresistance in the Weyl semimetal NbP[J]. Scientific Reports, 7, 43394(2017).

    [55] Ma J, Pesin D A. Chiral magnetic effect and natural optical activity in metals with or without Weyl points[J]. Physical Review B, 92, 235205(2015).

    [56] Kharzeev D E, Yee H U. Anomaly induced chiral magnetic current in a Weyl semimetal: chiral electronics[J]. Physical Review B, 88, 115119(2013).

    [57] Lu L, Wang Z Y, Ye D X et al. Experimental observation of Weyl points[J]. Science, 349, 622-624(2015).

    [58] Vaidya S, Noh J, Cerjan A et al. Observation of a charge-2 photonic Weyl point in the infrared[J]. Physical Review Letters, 125, 253902(2020).

    [59] Noh J, Huang S, Leykam D et al. Experimental observation of optical Weyl points and Fermi arc-like surface states[J]. Nature Physics, 13, 611-617(2017).

    [60] Jörg C, Vaidya S, Noh J et al. Observation of quadratic (charge-2) Weyl point splitting in near-infrared photonic crystals[J]. Laser & Photonics Reviews, 16, 2100452(2022).

    [61] Chowdhury D, Banerjee A, Narayan A. Light-driven Lifshitz transitions in non-Hermitian multi-Weyl semimetals[J]. Physical Review A, 103, L051101(2021).

    [62] Huang S M, Xu S Y, Belopolski I et al. New type of Weyl semimetal with quadratic double Weyl fermions[J]. Proceedings of the National Academy of Sciences of the United States of America, 113, 1180-1185(2016).

    [63] Liu Q H, Zunger A. Predicted realization of cubic Dirac fermion in quasi-one-dimensional transition-metal monochalcogenides[J]. Physical Review X, 7, 021019(2017).

    [64] Jian S K, Yao H. Correlated double-Weyl semimetals with coulomb interactions: possible applications to HgCr2Se4 and SrSi2[J]. Physical Review B, 92, 045121(2015).

    [65] Rechciński R, Tworzydło J. Landau levels of double-Weyl nodes in a simple lattice model[J]. Acta Physica Polonica A, 130, 1179-1182(2016).

    [66] Lai H H. Correlation effects in double-Weyl semimetals[J]. Physical Review B, 91, 235131(2015).

    [67] Chen Q, Fiete G A. Thermoelectric transport in double-Weyl semimetals[J]. Physical Review B, 93, 155125(2016).

    [68] Soluyanov A A, Gresch D, Wang Z et al. Type-Ⅱ Weyl semimetals[J]. Nature, 527, 495-498(2015).

    [69] Li R J, Lü B, Tao H B et al. Ideal type-Ⅱ Weyl points in topological circuits[J]. National Science Review, 8, nwaa192(2020).

    [70] O’Brien T E, Diez M, Beenakker C W J. Magnetic breakdown and Klein tunneling in a type-Ⅱ weyl semimetal[J]. Physical Review Letters, 116, 236401(2016).

    [71] Zyuzin A A, Tiwari R P. Intrinsic anomalous Hall effect in type-II Weyl semimetals[J]. JETP Letters, 103, 717-722(2016).

    [72] Zheng H, Hasan M Z. Quasiparticle interference on type-Ⅰ and type-Ⅱ Weyl semimetal surfaces: a review[J]. Advances in Physics X, 3, 1466661(2018).

    [73] Song W G, Lin Z Y, Ji J T et al. Bound-extended mode transition in type-Ⅱ synthetic photonic Weyl heterostructures[J]. Physical Review Letters, 132, 143801(2024).

    [74] Ma S J, Bi Y G, Guo Q H et al. Linked Weyl surfaces and Weyl arcs in photonic metamaterials[J]. Science, 373, 572-576(2021).

    [75] Yang B, Guo Q H, Tremain B et al. Ideal Weyl points and helicoid surface states in artificial photonic crystal structures[J]. Science, 359, 1013-1016(2018).

    [76] Yang B, Guo Q H, Tremain B et al. Direct observation of topological surface-state arcs in photonic metamaterials[J]. Nature Communications, 8, 97(2017).

    [77] Yang Y H, Gao Z, Feng X L et al. Ideal unconventional Weyl point in a chiral photonic metamaterial[J]. Physical Review Letters, 125, 143001(2020).

    [78] Chen W J, Xiao M, Chan C T. Photonic crystals possessing multiple Weyl points and the experimental observation of robust surface states[J]. Nature Communications, 7, 13038(2016).

    [79] Fang C, Lu L, Liu J W et al. Topological semimetals with helicoid surfacestates[J]. Nature Physics, 12, 936-941(2016).

    [80] Yang H F, Liang A J, Chen C et al. Visualizing electronic structures of quantum materials by angle-resolved photoemission spectroscopy[J]. Nature Reviews Materials, 3, 341-353(2018).

    [81] Cheng H, Gao W L, Bi Y G et al. Vortical reflection and spiraling Fermi arcs with Weyl metamaterials[J]. Physical Review Letters, 125, 093904(2020).

    [82] Wang H Y, Xu W, Wei Z Y et al. Twisted photonic Weyl meta-crystals and aperiodic Fermi arc scattering[J]. Nature Communications, 15, 2440(2024).

    [83] Xia L B, Gao W L, Yang B et al. Stretchable photonic ‘Fermi arcs’ in twisted magnetized plasma[J]. Laser & Photonics Reviews, 12, 1700226(2018).

    [84] Jia H W, Zhang R X, Gao W L et al. Observation of chiral zero mode in inhomogeneous three-dimensional Weyl metamaterials[J]. Science, 363, 148-151(2019).

    [85] Ishida H, Liebsch A. Fermi arc engineering at the interface between two Weyl semimetals[J]. Physical Review B, 98, 195426(2018).

    [86] Dwivedi V. Fermi arc reconstruction at junctions between Weyl semimetals[J]. Physical Review B, 97, 064201(2018).

    [87] Lou B C, Zhao N, Minkov M et al. Theory for twisted bilayer photonic crystal slabs[J]. Physical Review Letters, 126, 136101(2021).

    [88] Andrei E Y, Efetov D K, Jarillo-Herrero P et al. The marvels of moiré materials[J]. Nature Reviews Materials, 6, 201-206(2021).

    [89] Nguyen D H M, Devescovi C, Nguyen D X et al. Fermi arc reconstruction in synthetic photonic lattice[J]. Physical Review Letters, 131, 053602(2023).

    [90] Abdulla F, Rao S, Murthy G. Fermi arc reconstruction at the interface of twisted Weyl semimetals[J]. Physical Review B, 103, 235308(2021).

    [91] Buccheri F, Egger R, De Martino A. Transport, refraction, and interface arcs in junctions of Weyl semimetals[J]. Physical Review B, 106, 045413(2022).

    [92] Fonseca A G E, Christensen T, Joannopoulos J D et al. Quasicrystalline Weyl points and dense Fermi-Bragg arcs[EB/OL]. https://arxiv.org/abs/2211.14299v3

    [93] Slager R J, Juričić V, Roy B. Dissolution of topological Fermi arcs in a dirty Weyl semimetal[J]. Physical Review B, 96, 201401(2017).

    [94] Zheng Y, Chen W, Xing D Y. Andreev reflection in Fermi-arc surface states of Weyl semimetals[J]. Physical Review B, 104, 075420(2021).

    [95] Yang Y, Bi Y G, Peng L et al. Veselago lensing with Weyl metamaterials[J]. Optica, 8, 249-254(2021).

    Hanyu Wang, Mengjian Zhu, Chucai Guo, Zhihong Zhu, Biao Yang. Experimental Progress on Optical Weyl Metamaterials and Fermi Arcs (Invited)[J]. Acta Optica Sinica (Online), 2025, 2(1): 0110001
    Download Citation