• Infrared Technology
  • Vol. 43, Issue 8, 757 (2021)
Kun WANG, Yong SHI, Chichi LIU, Yi XIE, Ping CAI, and Songtao KONG*
Author Affiliations
  • [in Chinese]
  • show less
    DOI: Cite this Article
    WANG Kun, SHI Yong, LIU Chichi, XIE Yi, CAI Ping, KONG Songtao. A Review of Infrared Spectrum Modeling Based on Convolutional Neural Networks[J]. Infrared Technology, 2021, 43(8): 757 Copy Citation Text show less
    References

    [1] Gente R, Busch S F, Eva-Maria Stbling, et al. Quality control of sugar beet seeds with THz time-domain spectroscopy[J]. IEEE Transactions on Terahertz ence & Technology, 2016, 6(5):754-756.

    [2] Przybylek P. A new method for indirect measurement of water content in fibrous electro-insulating materials using near-infrared spectroscopy[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(3):1798-1804.

    [3] Hiroaki I, Toyonori N, Eiji T. Measurement of pesticide residues in food based on diffuse reflectance IR spectroscopy[J]. IEEE Transactions on Instrumentation and Measurement, 2002, 51(5): 886-890.

    [4] Mignani A G, Ciaccheri L, Mencaglia A A, et al. Spectroscopy AS a “green” technique for food quality and safety applications[C]//Technical Digest of the Eighteenth Microoptics Conference of IEEE, 2013: 1-2.

    [5] Nishizawa S, Morita H, Iwamoto T, et al. Terahertz time-domain spectroscopy applied to nondestructive evaluation of pharmaceutical products[C]//2011 International Conference on Infrared, Millimeter, and Terahertz Waves of IEEE, 2011: 1-2.

    [6] ZOU Xiaobo, ZHAO Jiewen, Povey M J W, et al. Variables selection methods in near-infrared spectroscopy[J]. Analytica Chimica Acta, 2010, 667(1-2): 14-32.

    [8] Malek S, Melgani F, Bazi Y. One-dimensional convolutional neural networks for spectroscopic signal regression[J]. Journal of Chemometrics, 2017: e2977.

    [9] LIU Xuemei, ZHANG Hailiang, SUN Xudong, et al. NIR sensitive wavelength selection based on different methods[C]//2010 International Conference on Mechanic Automation and Control Engineering, 2010: 26-28.

    [10] Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems, 2012: 1097-1105.

    [11] Devos O, Ruckebusch C, Durand A, et al. Support vector machines (SVM) in near infrared (NIR) spectroscopy: focus on parameters optimization and model interpretation[J]. Chemometrics and Intelligent Laboratory Systems, 2009, 96(1): 27-33.

    [12] Demeulemeester J, Smeets D, Barradas N P, et al. Artificial neural networks for instantaneous analysis of real-time rutherford backscattering spectra[J]. Nuclear Instruments and Methods in Physics Research, 2010, 268(10): 1676-1681.

    [13] Lee S, Choi H, Cha K, et al. Random forest as a potential multivariate method for near-infrared (NIR) spectroscopic analysis of complex mixture samples: Gasoline and naphtha[J]. Microchemical Journal, 2013, 110: 739-748.

    [14] McCarty G W, Reeves J B, Reeves V B, et al. Mid-infrared and near‐infrared diffuse reflectance spectroscopy for soil carbon measurement[J]. Soil Science Society of America Journal, 2002, 66(2): 640-646.

    [15] Gerretzen J, Szymańska E, Jansen J J, et al. Simple and effective way for data preprocessing selection based on design of experiments[J]. Analytical Chemistry, 2015, 87(24): 12096-12103.

    [16] Hubel D H, Wiesel T N. Receptive fields and functional architecture of monkey striate cortex[J]. The Journal of Physiology, 1968, 195(1): 215-243.

    [17] CHEN Yuanyuan, WANG Zhibin. Quantitative analysis modeling of infrared spectroscopy based on ensemble convolutional neural networks[J]. Chemometrics and Intelligent Laboratory Systems, 2018, 181: 1-10.

    [18] NI C, WANG D, TAO Y. Variable weighted convolutional neural network for the nitrogen content quantization of Masson pine seedling leaves with near-infrared spectroscopy[J]. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 2019, 209: 32-39.

    [19] LeCun Y. The MNIST database of handwritten digits[EB/OL]. http://yann. lecun. com/exdb/mnist/, 1998.

    [20] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]//International Conference on Neural Information Processing Systems, 2012:1097-1105.

    [21] CHENG G, ZHOU P, HAN J. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12): 7405-7415.

    [22] LeCun Y, Boser B E, Denker J S, et al. Handwritten digit recognition with a back-propagation network[C]//Advances in Neural Information Processing Systems, 1990: 396-404.

    [23] GU J, WANG Z, Kuen J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 77: 354-377.

    [24] WANG T, WU D J, Coates A, et al. End-to-end text recognition with convolutional neural networks[C]//Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012) of IEEE, 2012: 3304-3308.

    [25] XU B, WANG N, CHEN T, et al. Empirical evaluation of rectified activations in convolutional network[J/OL]. arXiv preprint arXiv:1505.00853, 2015.

    [26] LeCun Y A, Bottou L, Orr G B, et al. Efficient Backprop[M]//Neural Networks: Tricks of the Trade, Springer, 2012: 9-48.

    [27] Nwankpa C, Ijomah W, Gachagan A, et al. Activation functions: Comparison of trends in practice and research for deep learning[J/OL]. arXiv preprint arXiv:1811.03378, 2018.

    [28] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.

    [29] Boureau Y L, Ponce J, LeCun Y. A theoretical analysis of feature pooling in visual recognition[C]//Proceedings of the 27th International Conference on Machine Learning (ICML-10). 2010: 111-118.

    [30] Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift[J/OL]. arXiv preprint arXiv:1502.03167, 2015.

    [31] Hinton G E, Srivastava N, Krizhevsky A, et al. Improving neural networks by preventing co-adaptation of feature detectors[J/OL]. arXiv preprint arXiv:1207.0580, 2012.

    [32] Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1): 1929-1958.

    [33] Khan A, Sohail A, Zahoora U, et al. A survey of the recent architectures of deep convolutional neural networks[J]. Artificial Intelligence Review, 2020, 53(8): 5455-5516.

    [34] LIN M, CHEN Q, YAN S. Network in network[J/OL]. arXiv preprint arXiv:1312.4400, 2013.

    [35] Rawat W, WANG Z. Deep convolutional neural networks for image classification: a comprehensive review[J]. Neural Computation, 2017, 29(1): 2352-2449.

    [36] Potter R K, Kopp G A, Green H C. Visible Speech, New York, 1947[J]. D. Van Nostrand Co., 1962(8): 39.

    [37] Griffin D, Lim J. Signal estimation from modified short-time Fourier transform[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1984, 32(2): 236-243.

    [38] Padarian J, Minasny B, McBratney A B. Using deep learning to predict soil properties from regional spectral data[J]. Geoderma Regional, 2019, 16: e00198.

    [39] Blackman R B, Tukey J W. The measurement of power spectra from the point of view of communications engineering[J]. Bell System Technical Journal, 1958, 37(1): 185-282.

    [40] Ng W, Minasny B, Montazerolghaem M, et al. Convolutional neural network for simultaneous prediction of several soil properties using visible/near-infrared, mid-infrared, and their combined spectra[J]. Geoderma, 2019, 352: 251-267.

    [41] WANG Q, BO Z, MA H, et al. A method for rapidly evaluating reliability and predicting remaining useful life using two-dimensional convolutional neural network with signal conversion[J]. Journal of Mechanical Science and Technology, 2019, 33(6): 2561-2571.

    [42] WEN L, LI X, GAO L, et al. A new convolutional neural network-based data-driven fault diagnosis method[J]. IEEE Transactions on Industrial Electronics, 2017, 65(7): 5990-5998.

    [46] Kiranyaz S, Ince T, Abdeljaber O, et al. 1-d convolutional neural networks for signal processing applications[C]//2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) of IEEE, 2019: 8360-8364.

    [47] CHEN Y Y, WANG Z B. End-to-end quantitative analysis modeling of near‐infrared spectroscopy based on convolutional neural network[J]. Journal of Chemometrics, 2019, 33(5): e3122.

    [48] LIU J, Osadchy M, Ashton L, et al. Deep convolutional neural networks for Raman spectrum recognition: a unified solution[J]. Analyst, 2017, 142(21): 4067-4074.

    [50] Ruder S. An overview of multi-task learning in deep neural networks[J/OL]. arXiv preprint arXiv:1706.05098, 2017.

    [51] ZHANG Y, YANG Q. A survey on multi-task learning[J/OL]. arXiv preprint arXiv:1707.08114, 2017.

    [52] Ramsundar B, Kearnes S, Riley P, et al. Massively multitask networks for drug discovery[J/OL]. arXiv preprint arXiv:1502.02072, 2015.

    [53] DU Jian, HU Bingliang, LIU Yongzheng, et al. Study on quality identification of macadamia nut based on convolutional neural networks and spectral features[J]. Spectroscopy and Spectral Analysis, 2018, 38(5): 1514-1519.

    [54] Kingma D P, Ba J Adam: a method for stochastic optimization[J/OL]. arXiv preprint arXiv:1412.6980, 2014.

    [55] Acquarelli J, van Laarhoven T, Gerretzen J, et al. Convolutional neural networks for vibrational spectroscopic data analysis[J]. Analytica Chimica Acta, 2017, 954: 22-31.

    WANG Kun, SHI Yong, LIU Chichi, XIE Yi, CAI Ping, KONG Songtao. A Review of Infrared Spectrum Modeling Based on Convolutional Neural Networks[J]. Infrared Technology, 2021, 43(8): 757
    Download Citation