• Matter and Radiation at Extremes
  • Vol. 1, Issue 4, 192 (2016)
Yuhong Xu*
Author Affiliations
  • Southwestern Institute of Physics, PO Box 432, Chengdu, People's Republic of China 610041
  • show less
    DOI: 10.1016/j.mre.2016.07.001 Cite this Article
    Yuhong Xu. A general comparison between tokamak and stellarator plasmas[J]. Matter and Radiation at Extremes, 2016, 1(4): 192 Copy Citation Text show less
    References

    [1] K. Ikeda, Progress in the ITER physics basis, Nucl. Fusion 47 (2007) S1-S404.

    [2] V.D. Shafranov, Stellarators, Nucl. Fusion 20 (1980) 1075.

    [3] Wendelstein 7-X fusion device produces its first hydrogen plasma, February 03, 2016. http://www.ipp.mpg.de/4010154/02_16.

    [4] L. Spitzer, The stellarator concept, Phys. Fluids 1 (1958) 253.

    [5] C. Mercier, Equilibrium and stability of a toroidal magnetohydrodynamic system in the neighbourhood of a magnetic axis, Nucl. Fusion 4 (1964) 213.

    [6] U. Stroth, A comparative study of transport in stellarators and tokamaks, Plasma Phys. Control. Fusion 40 (1998) 9.

    [7] J. Wesson, Tokamaks, fourth ed., Oxford University Press, 2011.

    [8] P. Helander, C.D. Beidler, T.M. Bird, M. Drevlak, Y. Feng, et al., Stellarator and tokamak plasmas: a comparison, Plasma Phys. Control. Fusion 54 (2012) 124009.

    [9] T. Hayashi, T. Sato, P. Merkel, J. Nu¨hrenberg, U. Schwenn, et al., Formation and ‘self- healing’ of magnetic islands in finite-b helias equilibria, Phys. Plasmas 1 (1994) 3262.

    [10] C.C. Hegna, J.D. Callen, Stability of bootstrap current-driven magnetic islands in stellarators, Phys. Plasmas 1 (1994) 3135.

    [11] Y. Narushima, K.Y. Watanabe, S. Sakakibara, K. Narihara, I. Yamadaet, et al., Dependence of spontaneous growth and suppression of the magnetic island on beta and collisionality in the LHD, Nucl. Fusion 48 (2008) 075010.

    [12] L.C. Bernard, D. Dobrott, F.J. Helton, R.W. Moore, Stabilization of ideal MHD modes, Nucl. Fusion 20 (1980) 1199.

    [13] J.W. Connor, J.B. Taylor, Scaling laws for plasma confinement, Nucl. Fusion 17 (1977) 1047.

    [14] W.A. Cooper, L. Brocher, J.P. Graves, G.A. Cooper, Y. Narushima, et al., Drift stabilisation of ballooning modes in an inward-shifted LHD configuration, Contrib. Plasma Phys. 50 (2010) 713.

    [15] H. Yamada, R. Sakamoto, J. Miyazawa, M. Kobayashi, T. Morisakiet, et al., Characterization and operational regime of high density plasmas with internal diffusion barrier observed in the large helical device, Plasma Phys. Control. Fusion 49 (2007) B487.

    [16] G. Waidmann, G. Kuang, Density limits and evolution of disruptions in ohmic TEXTOR plasmas, Nucl. Fusion 32 (1992) 645.

    [17] Y. Xu, B.J. Peterson, S. Sudo, T. Tokuzawa, K. Narihara, et al., Properties of thermal decay and radiative collapse of NBI heated plasmas on LHD, Nucl. Fusion 42 (2002) 601.

    [18] M. Greenwald, Density limits in toroidal plasmas, Plasma Phys. Control. Fusion 44 (2002) R27.

    [19] B. Lipschultz, Review of MARFE phenomena in tokamaks, J. Nucl. Mater. 145-147 (1987) 15.

    [20] D.R. Baker, R.T. Snider, M. Nagami, Observation of cold, high-density plasma near the doublet III limiter, Nucl. Fusion 22 (1982) 807.

    [21] S. Sudo, Y. Takeiri, H. Zushi, F. Sano, K. Itoh, et al., Scalings of energy confinement and density limit in stellarator/heliotron devices, Nucl. Fusion 30 (1990) 11.

    [22] B.J. Peterson, Y. Xu, S. Sudo, T. Tokuzawa, K. Tanaka, et al., Multifaceted asymmetric radiation from the edge-like asymmetric radiative collapse of density limited plasmas in the large helical device, Phys. Plasmas 8 (2001) 3861.

    [23] H. Yamada, K. Kawahata, T. Mutoh, N. Ohyabu, Y. Takeiri, et al., Progress in the integrated development of the helical system, Fusion Sci. Technol. 58 (2010) 12.

    [24] M. Hirsch, J. Baldzuhn, C. Beidler, R. Brakel, R. Burhenn, et al., Major results from the stellarator Wendelstein 7-AS, Plasma Phys. Control. Fusion 50 (2008) 053001.

    [25] Y. Kolesnichenko, A. K€onies, V.V. Lutsenko, Y.V. Yakovenko, Affinity and difference between energetic-ion-driven instabilities in 2D and 3D toroidal systems, Plasma Phys. Control. Fusion 53 (2011) 024007.

    [26] R. Balescu, Transport Processes in Plasmas: Neoclassical Transport, Elsevier, North Holland, 1998.

    [27] F.L. Hinton, R.D. Hazeltine, Theory of plasma transport in toroidal confinement systems, Rev. Mod. Phys. 48 (1976) 239.

    [28] S.P. Hirshman, D.J. Sigmar, Neoclassical transport of impurities in tokamak plasmas, Nucl. Fusion 21 (1981) 1079.

    [29] L.M. Kovrizhnykh, The energy confinement time in stellarators”, Nucl. Fusion 24 (1984) 435.

    [30] H.E. Mynick, Transport optimization in stellarators, Phys. Plasmas 13 (2006) 058102.

    [31] C.D. Beidler, K. Allmaier, M.Y. Isaev, S.V. Kasilov, W. Kernbichler, et al., Benchmarking of the mono-energetic transport coefficients-results from the International Collaboration on Neoclassical Transport in Stellarators (ICNTS), Nucl. Fusion 51 (2011) 076001.

    [32] J.W. Connor, R.J. Hastie, J.B. Taylor, Stability of general plasma equilibria, Plasmas Phys. 22 (1980) 757.

    [33] R.L. Dewar, H. Glasser, Ballooning mode spectrum in general toroidal systems, Phys. Fluids 26 (1983) 3038.

    [34] J.C. Adam, W.M. Tang, P.H. Rutherford, Destabilization of the trappedelectron mode by magnetic curvature drift resonances, Phys. Fluids 19 (1976) 561.

    [35] J.H.E. Proll, P. Helander, J.W. Connor, G.G. Plunk, Resilience of quasiisodynamic stellarators against trapped-particle instabilities, Phys. Rev. Lett. 108 (2012) 245002.

    [36] V. Kornilov, R. Kleiber, R. Hatzky, L. Villard, G. Jost, et al., Gyrokinetic global three-dimensional simulations of linear ion-temperature-gradient modes in Wendelstein 7-X, Phys. Plasmas 11 (2004) 3196.

    [37] G. Rewoldt, L.P. Ku, W.M. Tang, Comparison of microinstability properties for stellarator magnetic geometries, Phys. Plasmas 12 (2005) 102512.

    [38] P. Xanthopoulos, F. Jenko, Gyrokinetic analysis of linear microinstabilities for the stellarator Wendelstein 7-X, Phys. Plasmas 14 (2007) 042501.

    [39] J.A. Baumgaertel, E.A. Belli, W. Dorland, W. Guttenfelder, G.W. Hammett, et al., Simulating gyrokinetic microinstabilities in stellarator geometry with GS2, Phys. Plasmas 18 (2011) 122301.

    [40] T.H. Watanabe, H. Sugama, M. Nunami, Effects of equilibrium-scale radial electric fields on zonal flows and turbulence in helical configurations, Nucl. Fusion 51 (2011) 123003.

    [41] R.E. Waltz, A.H. Boozer, Local shear in general magnetic stellarator geometry, Phys. Fluids B 5 (1993) 2201.

    [42] R. Kleiber, B. Scott, Fluid simulations of edge turbulence for stellarators and axisymmetric configurations, Phys. Plasmas 12 (2005) 102507.

    [43] C. Kessel, J. Manickam, G. Rewoldt, W.M. Tang, Improved plasma performance in tokamaks with negative magnetic shear, Phys. Rev. Lett. 72 (1994) 1212.

    [44] M. Hugon, B.P.V. Milligen, P. Smeulders, L.C. Appel, D.V. Bartlett, et al., Shear reversal and MHD activity during pellet enhanced performance pulses in JET, Nucl. Fusion 32 (1992) 33.

    [45] E.A. Lazarus, L.L. Lao, T.H. Osborne, T.S. Taylor, A.D. Turnbull, et al., An optimization of beta in the DIII-D tokamak, Phys. Fluids B 4 (1992) 3644.

    [46] G.T. Hoang, C. Gil, E. Joffrin, D. Moreau, A. Becoulet, et al., Improved confinement in high li lower hybrid driven steady state plasmas in TORE SUPRA, Nucl. Fusion 34 (1994) 75.

    [47] Y. Kamada, K. Ushigusa, O. Naito, Y. Neyatani, T. Ozeki, et al., Noninductively current driven H mode with high beta N and high beta p values in JT-60U, Nucl. Fusion 34 (1994) 1605.

    [48] W.M. Nevins, et al., Plasma physics and controlled fusion research, in: Proc. 14th Int. Conf vol. 3, IAEA, Vienna, 1992, p. p 279.

    [49] C.P. Ritz, et al., Plasma physics and controlled fusion research, in: Proc. 13th Int Conf vol. 2, IAEA, Vienna, 1991, p. p 589.

    [50] C. Hidalgo, Edge turbulence and anomalous transport in fusion plasmas, Plasma Phys. Control. Fusion 37 (1995) A53.

    [51] M. Endler, H. Niedermeyer, L. Giannone, E. Kolzhauer, A. Rudyj, et al., Measurements and modelling of electrostatic fluctuations in the scrapeoff layer of ASDEX, Nucl. Fusion 35 (1995) 1307.

    [52] R.J. Fonck, N. Bretz, G. Cosby, R. Durst, E. Mazzucato, et al., Fluctuation measurements in the plasma interior on TFTR, Plasma Phys. Control. Fusion 34 (1992) 1993.

    [53] L. Giannone, R. Balbín, H. Niedermeyer, M. Endler, G. Herre, et al., Density, temperature, and potential fluctuation measurements by the swept Langmuir probe technique in Wendelstein 7-AS, Phys. Plasmas 1 (1994) 3614.

    [54] X. Garbet, J. Payan, C. Laviron, P. Devynck, S.K. Saha, et al., Turbulence and energy confinement in TORE SUPRA ohmic discharges, Nucl. Fusion 32 (1992) 2147.

    [55] S. Sattler, H.J. Hartfuss, Experimental evidence for electron temperature fluctuations in the core plasma of the W7-AS stellarator, Phys. Rev. Lett. 72 (1994) 653.

    [56] P.N. Yushmanov, T. Takizuka, K.S. Riedel, O.J.W.F. Kardaun, J.G. Cordey, et al., Scalings for tokamak energy confinement, Nucl. Fusion 30 (1990) 1999.

    [57] ITER Physics Expert Group on Confinement and Transport, Chapter 2: plasma confinement and transport, Nucl. Fusion 39 (1999) 2175.

    [58] U. Stroth, M. Murakami, R.A. Dory, H. Yamada, S. Okamura, et al., Energy confinement scaling from the international stellarator database, Nucl. Fusion 36 (1996) 1063.

    [59] M. Bessenrodt-Weberpals, F. Wagner, O. Gehre, L. Giannone, J.V. Hofmann, et al., The isotope effect in ASDEX, Nucl. Fusion 33 (1993) 1205.

    [60] M. Ramisch, N. Mahdizadeh, U. Stroth, F. Greiner, C. Lechte, et al., rs scaling of characteristic turbulent structures in the torsatron TJ-K, Phys. Plasmas 12 (2005) 032504.

    [61] B. Liu, M.A. Pedrosa, B.P.V. Milligen, C. Hidalgo, C. Silva, et al., Isotope effect physics, turbulence and long-range correlation studies in the TJ-II stellarator, Nucl. Fusion 55 (2015) 112002.

    [62] Y. Xu, C. Hidalgo, I. Shesterikov, A. Kramer-Flecken, S. Zoletnik, et al., Isotope effect and multiscale physics in fusion plasmas, Phys. Rev. Lett. 110 (2013) 265005.

    [63] A.D. Gurchenko, E.Z. Gusakov, P. Niskala, A.B. Altukhov, L.A. Esipov, et al., The isotope effect in turbulent transport control by GAMs. Observation and gyrokinetic modeling, Plasma Phys. Control. Fusion 58 (2016) 044002.

    [64] T.S. Hahm, L.Wang,W.X.Wang, E.S. Yoon, F.X. Duthoit, et al., Isotopic dependence of residual zonal flows, Nucl. Fusion 53 (2013) 072002.

    [65] T.H. Stix, Decay of poloidal rotation in a tokamak plasma, Phys. Fluids 16 (1973) 1260.

    [66] V. Rozhansky, M. Tendler, Reviews of Plasma Physics, Plasma Rotation in Tokamaks, 1996. New York-London (Chapter 3).

    [67] P. Helander, On rapid plasma rotation, Phys. Plasmas 14 (2007) 104501.

    [68] H. Sugama, T.H. Watanabe, M. Nunami, S. Nishimura, Quasisymmetric toroidal plasmas with large mean flows, Phys. Plasmas 18 (2011) 082505.

    [69] A. Fujisawa, A review of zonal flow experiments, Nucl. Fusion 49 (2009) 013001.

    [70] Y. Feng, M. Kobayashi, T. Lunt, D. Reiter, Comparison between stellarator and tokamak divertor transport, Plasma Phys. Control. Fusion 53 (2011) 024009.

    [71] P. Grigull, K. Mccormick, J. Baldzuhn, R. Burhenn, R. Brakel, et al., First island divertor experiments on the W7-AS stellarator, Plasma Phys. Control. Fusion 43 (2001) A175.

    [72] N. Ohyabu, T. Watanabe, H. Ji, H. Akao, T. Ono, et al., The large helical device (LHD) helical divertor, Nucl. Fusion 34 (1994) 387.

    [73] Y. Shimomura, M. Keilhacker, K. Lackner, H. Murmann, Characteristics of the divertor plasma in neutral-beam-heated ASDEX discharges, Nucl. Fusion 23 (1983) 869.

    [74] M. Kobayashi, Y. Feng, S. Masuzaki, M. Shojia, J. Miyazawaa, et al., Divertor transport study in the large helical device, J. Nucl. Mater 363 (2007) 294.

    [75] Y. Feng, F. Sardei, P. Grigull, K. Mccormick, J. Kisslinger, et al., Transport in island divertors: 3D modelling and comparison to first experiments on W7-AS, Plasma Phys. Control. Fusion 44 (2002) 611.

    [76] J. Nu¨hrenberg, R. Zille, Quasi-helically symmetric toroidal stellarators, Phys. Lett. A 129 (1988) 113.

    [77] A.H. Boozer, Quasi-helical symmetry in stellarators, Plasma Phys. Control. Fusion 37 (1995) A103.

    [78] M. Drevlak, F. Brochard, P. Helander, J. Kisslinger, M. Mikhailov, et al., ESTELL: a quasi-toroidally symmetric stellarator, Contrib. Plasma Phys. 53 (2013) 459.

    [79] J.R. Cary, S.G. Shasharina, Omnigenity and quasihelicity in helical plasma confinement systems, Phys. Plasmas 4 (1997) 3323.

    [80] S. Gori, W. Lotz, J. Nuhrenberg, Theory Fusion Plasmas (1996) 335.

    [81] P. Helander, Theory of plasma confinement in non-axisymmetric magnetic fields, Rep. Prog. Phys. 77 (2014) 087001.

    [82] H. Wobig, Theory of advanced stellarators, Plasma Phys. Control. Fusion 41 (1999) A159.

    [83] C.D. Beidler, E. Harmeyer, F. Herrnegger, Y. Igitkhanov, A. Kendl, et al., The Helias reactor HSR4/18, Nucl. Fusion 41 (2001) 1759.

    [84] R.C. Wolf, C.D. Beidler, R. Burhenn, J. Geiger, M. Hirsch, et al., From Wendelstein 7-X to a Stellarator Reactor, Plasma Fusion Res. 5 (2010) S1011.

    [85] A.H. Boozer, Physics of magnetically confined plasmas, Rev. Mod. Phys. 76 (2004) 1071.

    Yuhong Xu. A general comparison between tokamak and stellarator plasmas[J]. Matter and Radiation at Extremes, 2016, 1(4): 192
    Download Citation