• Frontiers of Optoelectronics
  • Vol. 9, Issue 3, 497 (2016)
Yu XIANG and Shilong PAN*
Author Affiliations
  • Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education,Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
  • show less
    DOI: 10.1007/s12200-016-0561-z Cite this Article
    Yu XIANG, Shilong PAN. GaAs-based polarization modulators for microwave photonic applications[J]. Frontiers of Optoelectronics, 2016, 9(3): 497 Copy Citation Text show less
    References

    [1] Seeds A J. Microwave photonics. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 877–887

    [2] Capmany J, Novak D. Microwave photonics combines two worlds. Nature Photonics, 2007, 1(6): 319–330

    [3] Yao J. Microwave Photonics. Journal of Lightwave Technology, 2009, 27(3): 314–335

    [4] Capmany J, Li G, Lim C, Yao J. Microwave photonics: current challenges towards widespread application. Optics Express, 2013, 21(19): 22862–22867

    [5] Yao J. Photonic generation of microwave arbitrary waveforms. Optics Communications, 2011, 284(15): 3723–3736

    [6] Capmany J, Mora J, Gasulla I, Sancho J, Lloret J, Sales S. Microwave photonic signal processing. Journal of Lightwave Technology, 2013, 31(4): 571–586

    [7] Pan S, Zhu D, Zhang F Z. Microwave photonics for modern Radar systems. Transactions of Nanjing University of Aeronautics and Astronautics, 2014, 31(3): 219–240

    [8] Sotom M, Benazet B, Kernec A L, Maignan M. Microwave photonic technologies for flexible satellite telecom payloads. In: Proceedings of 35th European Conference on Optical Communication, Vienna, IEEE, 2009, 1–4

    [9] Koonen A M J, Larrode M G, Ng'oma A, Wang K, Yang H, Zheng Y, Tangdiongga E. Perspectives of Radio over fiber technologies. In: Proceedings of Optical Fiber Communication Conference, San Diego, IEEE, 2008, 1–3

    [10] Yamada M, Haraguchi Y. Linewidth broadening of SCH quantumwell lasers enhanced by carrier fluctuation in optical guiding layer. IEEE Journal of Quantum Electronics, 1987, 23(6): 1054–1058

    [11] Olsen C M, Izadpanah H, Lin C. Wavelength chirp in a high-κL quarter-wave-shifted DFB laser: characterization and influence on system performance. Journal of Lightwave Technology, 1990, 8 (12): 1810–1815

    [12] Jungerman R L, Johnsen C, McQuate D J, Salomaa K, Zurakowski M P, Bray R C, Conrad G, Cropper D, Hernday P. High-speed optical modulator for application in instrumentation. Journal of Lightwave Technology, 1990, 8(9): 1363–1370

    [13] Wang S Y, Lin S H. High speed III–V electrooptic waveguide modulators at l = 1.3 mm. Journal of Lightwave Technology, 1988, 6(6): 758–771

    [14] Wood T H. Multiple quantum well (MQW) waveguide modulators. Journal of Lightwave Technology, 1988, 6(6): 743–757

    [15] Chaciński M, Westergren U, Stoltz B, Thylén L, Schatz R, Hammerfeldt S. Monolithically Integrated 100 GHz DFBTWEAM. Journal of Lightwave Technology, 2009, 27(16): 3410– 3415

    [16] Ueda Y, Fujisawa T, Kanazawa S, Kobayashi W, Takahata K, Ishii H. Very-low-voltage operation of Mach-Zehnder interferometertype electroabsorption modulator using asymmetric couplers. Optics Express, 2014, 22(12): 14610–14616

    [17] Wu T H, Chiu Y J, Lin F Z. High-speed (60 GHz) and low-voltagedriving electroabsorption modulator using two-consecutive-steps selective-undercut-wet-etching waveguide. IEEE Photonics Technology Letters, 2008, 20(14): 1261–1263

    [18] Liu A, Liao L, Rubin D, Nguyen H, Ciftcioglu B, Chetrit Y, Izhaky N, Paniccia M. High-speed optical modulation based on carrier depletion in a silicon waveguide. Optics Express, 2007, 15(2): 660– 668

    [19] Spickermann R, Sakamoto S R, PetersMG, Dagli N. GaAs/AlGaAs travelling wave electro-optic modulator with an electrical bandwidth> 40 GHz. Electronics Letters, 1996, 32(12): 1095–1096

    [20] Koren U, Koch T L, Presting H, Miller B I. InGaAs/InP multiple quantum well waveguide phase modulator. Applied Physics Letters, 1987, 50(7): 368–370

    [21] Noguchi K, Mitomi O, Miyazawa H. Millimeter-wave Ti:LiNbO3 optical modulators. Journal of Lightwave Technology, 1998, 16(4): 615–619

    [22] Lee M, Katz H E, Erben C, Gill D M, Gopalan P, Heber J D, McGee D J. Broadband modulation of light by using an electro-optic polymer. Science, 2002, 298(5597): 1401–1403

    [23] Walker R G. High speed electrooptic modulation in GaAs/GaAlAs waveguide devices. Journal of Lightwave Technology, 1987, 5(10): 1444–1453

    [24] Walker R G. Broadband (6 GHz) GaAs/AlGaAs electro-optic modulator with low drive power. Applied Physics Letters, 1989, 54 (17): 1613–1615

    [25] Walker R G, Bennion I, Carter A C. Low-voltage, 50 W, GaAs/ AlGaAs travelling-wave modulator with bandwidth exceeding 25 GHz. Electronics Letters, 1989, 25(23): 1549–1550

    [26] Walker R G. High-speed III–V semiconductor intensity modulators. IEEE Journal of Quantum Electronics, 1991, 27(3): 654–667

    [27] Lin S H, Wang S Y, Houng Y M. GaAs pin electro-optic travellingwave modulator at 1.3 mm. Electronics Letters, 1986, 22(18): 934– 935

    [28] Wang S Y, Lin S H, Houng Y M. GaAs travelling-wave polarization electro-optic waveguide modulator with bandwidth in excess of 20 GHz at 1.3 mm. Applied Physics Letters, 1987, 51(2): 83–85

    [29] Kim I, Tan M R T, Wang S Y. Analysis of a new microwave lowloss and velocity-matched III–V transmission line for travellingwave electrooptic modulators. Journal of Lightwave Technology, 1990, 8(5): 728–738

    [30] Nees J, Williamson S, Mourou G. 100 GHz travelling-wave electrooptic phase modulator. Applied Physics Letters, 1989, 54(20): 1962–1964

    [31] Jaeger N A F, Lee Z K F. Slow-wave electrode for use in compound semiconductor electrooptic modulators. IEEE Journal of Quantum Electronics, 1992, 28(8): 1778–1784

    [32] Jaeger N A F, Rahmatian F, Kato H, James R, Berolo E, Lee Z K F. Velocity-matched electrodes for compound semiconductor travelling- wave electrooptic modulators: experimental results. IEEE Microwave and Guided Wave Letters, 1996, 6(2): 82–84

    [33] Spickermann R, Dagli N. Millimeter wave coplanar slow wave structure on GaAs suitable for use in electro-optic modulators. Electronics Letters, 1993, 29(9): 774–775

    [34] Sakamoto S R, Spickermann R, Dagli N. Narrow gap coplanar slow wave electrode for travelling wave electro-optic modulators. Electronics Letters, 1995, 31(14): 1183–1185

    [35] Spickermann R, Peters M G, Dagli N. A polarization independent GaAs-AlGaAs electrooptic modulator. IEEE Journal of Quantum Electronics, 1996, 32(5): 764–769

    [36] Shin J H, Wu S, Dagli N. Bulk undoped GaAs–AlGaAs substrateremoved electrooptic modulators with 3.7-V-cm drive voltage at 1.55 mm. IEEE Photonics Technology Letters, 2006, 18(21): 2251– 2253

    [37] Shin J H, Chang Y C, Dagli N. 0.3 V drive voltage GaAs/AlGaAs substrate removed Mach-Zehnder intensity modulators. Applied Physics Letters, 2008, 92(20): 201103

    [38] Rahmatian F, Jaeger N A F, James R, Berolo E. An ultrahigh-speed AlGaAs-GaAs polarization converter using slow-wave coplanar electrodes. IEEE Photonics Technology Letters, 1998, 10(5): 675– 677

    [39] Grossard N, Forte H, Vilcot J P, Beche B, Goedgebuer J P. AlGaAs- GaAs polarization converter with electrooptic phase mismatch control. IEEE Photonics Technology Letters, 2001, 13(8): 830–832

    [40] Bull J D, Jaeger N A F, Kato H, Fairburn M, Reid A, Ghanipour P. 40 GHz electro-optic polarization modulator for fiber optic communications systems. Proceedings of the Society for Photo- Instrumentation Engineers, 2004, 5577: 133–143

    [41] Yariv A. Introduction to Optical Electronics. 2nd ed. New York: Holt, Rinehart, and Winston, 1976

    [42] Khazaei H R, Berolo O, James R, Wang W J, Maigné P, Young M, Ozard K, Reeves M, Ghannouchi F M. Charge carrier effect on the microwave losses observed on traveling-wave electrodes used in electro-optic modulators. Microwave and Optical Technology Letters, 1998, 17(4): 236–241

    [43] Kiziloglu K, Dagli N, Matthaei G L, Long S I. Experimental analysis of transmission line parameters in high-speed GaAs digital circuit interconnects. IEEE Transactions on Microwave Theory and Techniques, 1991, 39(8): 1361–1367

    [44] Colin R E. Foundation for Microwave Engineering. 2nd ed. Hoboken: John Wiley & Sons, 2007

    [45] Yao X S, Maleki L. High frequency optical subcarrier generator. Electronics Letters, 1994, 30(18): 1525–1526

    [46] Zhang H, Pan S, Huang M, Chen X. Polarization-modulated analog photonic link with compensation of the dispersion-induced power fading. Optics Letters, 2012, 37(5): 866–868

    [47] Pan S, Yao J. A frequency-doubling optoelectronic oscillator using a polarization modulator. IEEE Photonics Technology Letters, 2009, 21(13): 929–931

    [48] Pan S, Yao J. Tunable subterahertz wave generation based on photonic sextupling using a polarization modulator and a wavelength fixed notch filter. IEEE Transactions on Microwave Theory and Techniques, 2000, 58(7): 1967–1975

    [49] Zhu D, Pan S, Ben D. Tunable frequency-quadrupling dual-loop optoelectronic oscillator. IEEE Photonics Technology Letters, 2012, 24(3): 194–196

    [50] Zhu D, Liu S, Pan S. Multichannel up-conversion based on polarization –modulated optoelectronic oscillator. IEEE Photonics Technology Letters, 2014, 26(6): 544–547

    [51] Zhu D, Pan S, Cai S, Ben D. High-performance photonic microwave downconverter based on a frequency-doubling optoelectronic oscillator. Journal of Lightwave Technology, 2012, 30(18): 3036– 3042

    [52] Tang Z, Pan S. Transmission of 3-Gb/s uncompressed HD video in an optoelectronic-oscillator-based radio over fiber link. In: Proceeding of Radio and Wireless Symposium, Austin, IEEE, 2013, 319– 321

    [53] Li W, Zhang W, Yao J. Frequency-hopping microwave waveform generation based on a frequency-tunable optoelectronic oscillator. In: Proceeding of Optical Fiber Communications Conference and Exhibition (OFC), San Francisco, IEEE, 2014, 1–3

    [54] Jiang Z, Huang C B, Leaird D E, Weiner A M. Optical arbitrary waveform processing of more than 100 spectral comb lines. Nature Photonics, 2007, 1(8): 463–467

    [55] Chen C, Zhang F, Pan S. Generation of seven-line optical frequency comb based on a single polarization modulator. IEEE Photonics Technology Letters, 2013, 25(22): 2164–2166

    [56] Li W, Wang W T, Sun W H, Wang L X, Liu J G, Zhu N H. Generation of flat optical frequency comb using a single polarization modulator and a Brillouin-assisted power equalizer. IEEE Photonics Journal, 2014, 6(2): 1–8

    [57] He C, Pan S, Guo R, Zhao Y, Pan M. Ultraflat optical frequency comb generated based on cascaded polarization modulators. Optics Letters, 2012, 37(18): 3834–3836

    [58] Wang M, Yao J. Tunable optical frequency comb generation based on an optoelectronic oscillator. IEEE Photonics Technology Letters, 2013, 25(21): 2035–2038

    [59] Tang Z, Pan S, Zhu D, Guo R, Zhao Y, Pan M, Ben D, Yao J. Tunable optoelectronic oscillator based on a polarization modulator and a chirped FBG. IEEE Photonics Technology Letters, 2012, 24 (17): 1487–1489

    [60] Zhang Y, Pan S. Complex coefficient microwave photonic filter using a polarization-modulator-based phase shifter. IEEE Photonics Technology Letters, 2013, 25(2): 187–189

    [61] Zhang Y,Wu H, Zhu D, Pan S. An optically controlled phased array antenna based on single sideband polarization modulation. Optics Express, 2014, 22(4): 3761–3765

    Yu XIANG, Shilong PAN. GaAs-based polarization modulators for microwave photonic applications[J]. Frontiers of Optoelectronics, 2016, 9(3): 497
    Download Citation