[1] Sancho-Durá J, Zinoviev K, Lloret-Soler J, Rubio-Guviernau JL, Margallo-Balbás E, Drexler W. Handheld multi-modal imaging for point-of-care skin diagnosis based on akinetic integrated optics optical coherence tomography. J Biophoton. 2018;11(10):e201800193. .
[2] Xiang C, Jin W, Bowers JE. Silicon nitride passive and active photonic integrated circuits: trends and prospects. Photon Res. 2022;10(6):A82. .
[3] Drexler W, Fujimoto JG. Optical Coherence Tomography. Switzerland: Springer International Publishing; 2015. .
[4] Sattler E, Kästle R, Welzel J. Optical coherence tomography in dermatology. J Biomed Opt. 2013;18(6):061224. .
[5] Welzel J, Noack J, Lankenau E, Engelhardt R. Optical Coherence Tomography in Dermatology. In: Handbook of Optical Coherence Tomography. Luebeck: CRC Press; 2001. pp. 539–61. .
[6] Vakoc BJ, Fukumura D, Jain RK, Bouma BE. Cancer imaging by optical coherence tomography: preclinical progress and clinical potential. Nat Rev Cancer. 2012;12(5):363–8. .
[7] Photiou C, Kassinopoulos M, Pitris C. Extracting Morphological and Sub-Resolution Features from Optical Coherence Tomography Images, a Review with Applications in Cancer Diagnosis. Photonics. 2023;10(1):51. .
[8] Tsai TH, Fujimoto J, Mashimo H. Endoscopic Optical Coherence Tomography for Clinical Gastroenterology. Diagnostics. 2014;4(2):57–93. .
[9] Agneter A, Rank EA, Schmoll T, Leitgeb RA, Drexler W. Miniaturizing optical coherence tomography. Transl Biophotonics. 2022;4(1-2). .
[10] Song G, Jelly ET, Chu KK, Kendall WY, Wax A. A review of low-cost and portable optical coherence tomography. Prog Biomed Eng. 2021;3(3):032002. .
[11] Yurtsever G, Považay B, Alex A, Zabihian B, Drexler W, Baets R. Photonic integrated Mach-Zehnder interferometer with an on-chip reference arm for optical coherence tomography. Biomed Optic Express. 2014;5(4):1050. .
[12] Ji X, Yao X, Gan Y, Mohanty A, Tadayon MA, Hendon CP, et al. On-chip tunable photonic delay line. APL Photon. 2019;4(9):090803. .
[13] Akca BI, Worhoff K, de Ridder RM, Nguyen VD, Kalkman J, Ismail N, et al. Toward Spectral-Domain Optical Coherence Tomography on a Chip. IEEE J Sel Top Quantum Electron. 2012;18(3):1223–33. .
[14] Akca BI, Považay B, Alex A, Wörhoff K, de Ridder RM, Drexler W, et al. Miniature spectrometer and beam splitter for an optical coherence tomography on a silicon chip. Opt Express. 2013;21(14):16648. .
[15] Ruis RM, Leinse A, Dekker R, Heideman RG, van Leeuwen TG, Faber DJ. Decreasing the Size of a Spectral Domain Optical Coherence Tomography System With Cascaded Arrayed Waveguide Gratings in a Photonic Integrated Circuit. IEEE J Sel Top Quantum Electron. 2019;25(1):1–9. .
[16] Smit MK. New focusing and dispersive planar component based on an optical phased array. Electron Lett. 1988;24(7):385. .
[17] Takahashi H, Suzuki S, Kato K, Nishi I. Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution. Electron Lett. 1990;26(2):87. .
[18] Smit MK, Dam CV. PHASAR-based WDM-devices: Principles, design and applications. IEEE J Sel Top Quantum Electron. 1996;2(2):236–50. .
[19] Seyringer D. Arrayed Waveguide Gratings. Spotlight. SPIE; 2016. .
[20] Seyringer D, Schmid P, Bielik M, Uherek F, Chovan J, Kuzma A. Design, simulation, evaluation, and technological verification of arrayed waveguide gratings. Opt Eng. 2014;53(7):071803. .
[21] Seyringer D, Hodzic E. Calculation of accurate channel spacing of an AWG optical demultiplexer applying proportional method. In: Fédéli JM, editor. SPIE Proceedings. 9520, Integrated Photonics: Materials, Devices, and Applications III, 95200T. SPIE; 2015. .
[22] Rank EA, Sentosa R, Harper DJ, Salas M, Gaugutz A, Seyringer D, et al. Toward optical coherence tomography on a chip: in vivo three-dimensional human retinal imaging using photonic integrated circuit-based arrayed waveguide gratings. Light Sci Appl. 2021;10(1). .
[23] Richter A, Polatynski A, Mingaleev S, Sokolov E, de Felipe D, Conradi H, et al. Virtual prototyping of complex photonic components and integrated circuits for polymer-based integration platform. In: Lee EH, He S, editors. Smart Photonic and Optoelectronic Integrated Circuits XX. San Francisco: SPIE; 2018. .
[24] Nathan M. Microlens reflector for out-of-plane optical coupling of a waveguide to a buried silicon photodiode. Appl Phys Lett. 2004;85(14):2688–90. .
[25] Masini G, Sahni S, Capellini G, Witzens J, Gunn C. High-Speed Near Infrared Optical Receivers Based on Ge Waveguide Photodetectors Integrated in a CMOS Process. Adv Opt Technol. 2008;2008:1–5. .
[26] Byrd MJ, Timurdogan E, Su Z, Poulton CV, Fahrenkopf NM, Leake G, et al. Mode-evolution-based coupler for high saturation power Ge-on-Si photodetectors. Opt Lett. 2017;42(4):851. .
[27] Bernard M, Gemma L, Brunelli D, Paternoster G, Ghulinyan M. Coupling of Photonic Waveguides to Integrated Detectors Using 3D Inverse Tapering. J Lightwave Technol. 2022;40(18):6201–6. .
[28] Wen P, Tiwari P, Mauthe S, Schmid H, Sousa M, Scherrer M, et al. Waveguide coupled III-V photodiodes monolithically integrated on Si. Nat Commun. 2022;13(1). .
[29] Xue Y, Han Y, Wang Y, Li J, Wang J, Zhang Z, et al. High-speed and low dark current silicon-waveguide-coupled III-V photodetectors selectively grown on SOI. Optica. 2022;9(11):1219. .
[30] Roelkens G, Brouckaert J, Taillaert D, Dumon P, Bogaerts W, Thourhout DV, et al. Integration of InP/InGaAsP photodetectors onto silicon-on-insulator waveguide circuits. Opt Express. 2005;13(25):10102. .
[31] De Vita C, Toso F, Pruiti NG, Klitis C, Ferrari G, Sorel M, et al. Amorphous-silicon visible-light detector integrated on silicon nitride waveguides. Opt Lett. 2022;47(10):2598. .
[32] D’Agostino D, Desbordes T, Broeke R, Boerkamp M, Mink J, Ambrosius HPMM, et al. A monolithically integrated AWG based wavelength interrogator with 180 nm working range and pm resolution. In: Advanced Photonics for Communications. IPRSN. OSA; 2014. .
[33] Zhang Z, Wang Y, Wang J, Yi D, Chan DWU, Yuan W, et al. Integrated scanning spectrometer with a tunable micro-ring resonator and an arrayed waveguide grating. Photon Res. 2022;10(5):A74. .
[34] Hainberger R, Müllner P. PHOTONISCHE INTEGRIERTE SCHALTUNG, AT Patent, EP4033282A1;WO2022161965A1. EP4033282A1;WO2022161965A1. 2022. https://patents.google.com/patent/EP4033282A1.
[35] Vlaskovic M, Zimmermann H, Meinhardt G, Kraft J, Sagmeister M, Schoegler J. PIN-photodiode based active pixel in 0.35 m high-voltage CMOS for optical coherence tomography. In: 2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). Croatia: IEEE; 2019. .
[36] Vlaskovic M, Zimmermann H, Meinhardt G, Kraft J. Image sensor for spectral-domain optical coherence tomography on a chip. Electron Lett. 2020;56(24):1306–9. .
[37] Lichtenegger A, Baumann B, Yasuno Y. Optical Coherence Tomography Is a Promising Tool for Zebrafish-Based Research–A Review. Bioengineering. 2022;10(1):5. .
[38] Narumanchi S, Wang H, Perttunen S, Tikkanen I, Lakkisto P, Paavola J. Zebrafish Heart Failure Models. Front Cell Dev Biol. 2021;9. .
[39] Astell KR, Sieger D. Zebrafish In Vivo Models of Cancer and Metastasis. Cold Spring Harb Perspect Med. 2019;10(8):a037077. .
[40] Gamble JT, Elson DJ, Greenwood JA, Tanguay RL, Kolluri SK. The Zebrafish Xenograft Models for Investigating Cancer and Cancer Therapeutics. Biology. 2021;10(4):252. .
[41] Schuermann A, Helker CSM, Herzog W. Angiogenesis in zebrafish. Semin Cell Dev Biol. 2014;31:106–14. .
[42] Isogai S, Horiguchi M, Weinstein BM. The Vascular Anatomy of the Developing Zebrafish: An Atlas of Embryonic and Early Larval Development. Dev Biol. 2001;230(2):278–301. .
[43] Hegasy D. Illustration. www.hegasy.de. Accessed 8 Mar 2023.
[44] Seyringer D, Müllner P, Eggeling M, Agneter A, Nguyen Q, Rank EA, et al. 512-channel SiN-based AWG-spectrometer for OCT on a chip. In: 2024 24th International Conference on Transparent Optical Networks (ICTON). vol. 123. Bari: IEEE; 2024. pp. 1–4. .
[45] Leitgeb RA, Michaely R, Lasser T, Sekhar SC. Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning. Opt Lett. 2007;32(23):3453. .
[46] Wojtkowski M, Kowalczyk A, Leitgeb R, Fercher AF. Full range complex spectral optical coherence tomography technique in eye imaging. Opt Lett. 2002;27(16):1415. .
[47] Rarbi F, Dzahini D, Gallin-Martel L, Bouvier J. A low cross-talk 3-channel analog multiplexer with a 12-bit 25-MS/s pipelined ADC. In: 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC). Anaheim: IEEE; 2012. .
[48] Yoon C, Bauer A, Xu D, Dorrer C, Rolland JP. Absolute linear-in-k spectrometer designs enabled by freeform optics. Opt Express. 2019;27(24):34593. .
[49] Seyringer, D. Application of angular method to correct channel spacing between AWG demultiplexed channels. In Advanced Manufacturing, Electronics and Microsystems. TechConnect Briefs. TechConnect. 2016. pp. 267–71.
[50] Hodzic E, Seyringer D, Uherek F, Chovan J, Kuzma A. Calculation of accurate channel spacing of an arrayed waveguide grating optical multiplexer/demultiplexer applying position method. In: The Tenth International Conference on Advanced Semiconductor Devices and Microsystems. Smolenice: IEEE; 2014. .
[51] Seyringer D. Arrayed waveguide gratings for telecom and spectroscopic applications. In: Integrated Optics Volume 2: Characterization, devices and applications. [online]. Institution of Engineering and Technology; 2020. pp. 295–336. .
[52] PHASER tool from Optiwave. https://optiwave.com/resources/academia/wdm-phasar-download/. Accessed 2023.
[53] SolSTis Ti:Sapphire laser, M Square, 1 Kelvin Campus, West of Scotland Science Park, Glasgow, United Kingdom. https://m2lasers.com. Accessed Apr 2023.
[54] KLayout. https://www.klayout.de. Accessed 2023.
[55] Guizar-Sicairos M, Thurman ST, Fienup JR. Efficient subpixel image registration algorithms. Opt Lett. 2008;33(2):156. .
[56] Mariampillai A, Standish BA, Moriyama EH, Khurana M, Munce NR, Leung MKK, et al. Speckle variance detection of microvasculature using swept-source optical coherence tomography. Opt Lett. 2008;33(13):1530. .
[57] Zhang A, Zhang Q, Chen CL, Wang RK. Methods and algorithms for optical coherence tomography-based angiography: a review and comparison. J Biomed Opt. 2015;20(10):100901. .
[58] Westerfield M. The Zebrafish Book; A guide for the laboratory use of zebrafish (Danio rerio). 4th Edition. Eugene. 2007;1:1–3.