• Chinese Journal of Lasers
  • Vol. 45, Issue 11, 1102009 (2018)
Yan Shi1、2、*, Kuiming Chen1、*, Jia Liu1, Lingyu Li1, and Zhiheng Jiang1
Author Affiliations
  • 1 College of Mechanical and Electric Engineering, Changchun University of Science and Technology, Changchun, Jilin 130022, China
  • 2 National Base of International Science and Technology Cooperation in Optics, Changchun University of Science and Technology, Changchun, Jilin 130022, China
  • show less
    DOI: 10.3788/CJL201845.1102009 Cite this Article Set citation alerts
    Yan Shi, Kuiming Chen, Jia Liu, Lingyu Li, Zhiheng Jiang. Microstructure and Properties of Composite Coatings by Magnetic Field Assisted Laser Deposition[J]. Chinese Journal of Lasers, 2018, 45(11): 1102009 Copy Citation Text show less
    Home made rotatory magnetic field equipment
    Fig. 1. Home made rotatory magnetic field equipment
    Schematic of magnetic field distribution. (a) Magnetic induction line distribution; (b) magnetic field distribution within workpiece
    Fig. 2. Schematic of magnetic field distribution. (a) Magnetic induction line distribution; (b) magnetic field distribution within workpiece
    Schematic of friction experiment
    Fig. 3. Schematic of friction experiment
    Schematic of wetting angle measurement method
    Fig. 4. Schematic of wetting angle measurement method
    Surface morphologies of deposition layers under different magnetic field rotating speeds
    Fig. 5. Surface morphologies of deposition layers under different magnetic field rotating speeds
    Surface roughness of deposition layers under different magnetic field rotating speeds
    Fig. 6. Surface roughness of deposition layers under different magnetic field rotating speeds
    Changes of deposition layer under different magnetic field rotating speeds. (a) Melt height; (b) melt width
    Fig. 7. Changes of deposition layer under different magnetic field rotating speeds. (a) Melt height; (b) melt width
    Wetting angles of deposition layers under different magnetic field rotating speeds
    Fig. 8. Wetting angles of deposition layers under different magnetic field rotating speeds
    Cross-sectional micro-morphology of deposition layer under magnetic field free condition
    Fig. 9. Cross-sectional micro-morphology of deposition layer under magnetic field free condition
    Cross-sectional micro-morphologies of deposition layers under different magnetic field rotating speeds. (a) 100 r·min-1; (b) 200 r·min-1; (c) 300 r·min-1; (d) 400 r·min-1; (e) 500 r·min-1; (f) 600 r·min-1
    Fig. 10. Cross-sectional micro-morphologies of deposition layers under different magnetic field rotating speeds. (a) 100 r·min-1; (b) 200 r·min-1; (c) 300 r·min-1; (d) 400 r·min-1; (e) 500 r·min-1; (f) 600 r·min-1
    XRD patterns of deposition layers under different magnetic field rotating speeds
    Fig. 11. XRD patterns of deposition layers under different magnetic field rotating speeds
    Element scanning map of deposition layer. (a) Morphology by SEM; (b) line scanning map of Fe and W elements; (c) area scanning map of W element
    Fig. 12. Element scanning map of deposition layer. (a) Morphology by SEM; (b) line scanning map of Fe and W elements; (c) area scanning map of W element
    Cross-sectional morphologies of deposition layer under magnetic field free condition by SEM. (a) Upper part; (b) middle-lower part
    Fig. 13. Cross-sectional morphologies of deposition layer under magnetic field free condition by SEM. (a) Upper part; (b) middle-lower part
    Cross-sectional morphologies of deposition layers under magnetic field rotating speeds by SEM. (a) 100 r·min-1, upper part; (b) 100 r·min-1, middle-lower part; (c) 300 r·min-1, upper part; (d) 300 r·min-1, middle-lower part; (e) 600 r·min-1, upper part; (f) 600 r·min-1, middle-lower part
    Fig. 14. Cross-sectional morphologies of deposition layers under magnetic field rotating speeds by SEM. (a) 100 r·min-1, upper part; (b) 100 r·min-1, middle-lower part; (c) 300 r·min-1, upper part; (d) 300 r·min-1, middle-lower part; (e) 600 r·min-1, upper part; (f) 600 r·min-1, middle-lower part
    Microhardness of deposition layers under different magnetic field rotating speeds
    Fig. 15. Microhardness of deposition layers under different magnetic field rotating speeds
    Wear qualities of deposition layers under different magnetic field rotating speeds
    Fig. 16. Wear qualities of deposition layers under different magnetic field rotating speeds
    Wear morphologies of deposition layers under different magnetic field rotating speeds. (a) Without magnetic field; (b) 100 r·min-1; (c) 200 r·min-1; (d) 300 r·min-1; (e) 400 r·min-1; (f) 500 r·min-1; (g) 600 r·min-1
    Fig. 17. Wear morphologies of deposition layers under different magnetic field rotating speeds. (a) Without magnetic field; (b) 100 r·min-1; (c) 200 r·min-1; (d) 300 r·min-1; (e) 400 r·min-1; (f) 500 r·min-1; (g) 600 r·min-1
    ElementCSiMnCrNiSPNFe
    Content≤0.08≤1.0≤2.018.0-20.08.0-10.0≤0.03≤0.035≤0.1Bal.
    Table 1. Chemical compositions of 304 stainless steel (mass fraction, %)
    ElementCSiMnBCrNiMoWVFe
    Content0.60.750.20.69.60.83.03.01.0Bal.
    Table 2. Chemical compositions of Fe106 powder (mass fraction, %)
    ElementCBSiFeCrWNi
    Content1.5-3.01.5-3.51.0-4.0<148.0-12.05.62Bal.
    Table 3. Chemical compositions of Ni /WC powder (mass fraction, %)
    Yan Shi, Kuiming Chen, Jia Liu, Lingyu Li, Zhiheng Jiang. Microstructure and Properties of Composite Coatings by Magnetic Field Assisted Laser Deposition[J]. Chinese Journal of Lasers, 2018, 45(11): 1102009
    Download Citation