• Chinese Optics Letters
  • Vol. 23, Issue 3, 032501 (2025)
Xin Ye, Wenjia Zhang*, and Zuyuan He
Author Affiliations
  • State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    DOI: 10.3788/COL202523.032501 Cite this Article Set citation alerts
    Xin Ye, Wenjia Zhang, Zuyuan He, "Smoothed analysis-based noise manipulation for spatial photonic Ising machines," Chin. Opt. Lett. 23, 032501 (2025) Copy Citation Text show less
    References

    [1] C. Li, X. Zhang, J. Li et al. The challenges of modern computing and new opportunities for optics. PhotoniX, 2, 20(2021).

    [2] Y. Shen, N. C. Harris, S. Skirlo et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics, 11, 441(2017).

    [3] J. Feldmann, N. Youngblood, M. Karpov et al. Parallel convolutional processing using an integrated photonic tensor core. Nature, 589, 52(2021).

    [4] L. S. Madsen, F. Laudenbach, M. F. Askarani et al. Quantum computational advantage with a programmable photonic processor. Nature, 606, 75(2022).

    [5] T. Honjo, T. Sonobe, K. Inaba et al. 100,000-spin coherent Ising machine. Sci. Adv., 7, eabh0952(2021).

    [6] F. Böhm, G. Verschaffelt, G. Van der Sande. A poor man’s coherent Ising machine based on opto-electronic feedback systems for solving optimization problems. Nat. Commun., 10, 3538(2019).

    [7] Q. Cen, H. Ding, T. Hao et al. Large-scale coherent Ising machine based on optoelectronic parametric oscillator. Light Sci. Appl., 11, 333(2022).

    [8] D. Pierangeli, G. Marcucci, C. Conti. Large-scale photonic Ising machine by spatial light modulation. Phys. Rev. Lett., 122, 213902(2019).

    [9] F. Böhm, D. Alonso-Urquijo, G. Verschaffelt et al. Noise-injected analog Ising machines enable ultrafast statistical sampling and machine learning. Nat. Commun., 13, 5847(2022).

    [10] J. Ouyang, Y. Liao, Z. Ma et al. On-demand photonic Ising machine with simplified Hamiltonian calculation by phase encoding and intensity detection. Commun. Phys., 7, 168(2024).

    [11] Z. Li, R. Gan, Z. Chen et al. Scalable on-chip optoelectronic Ising machine utilizing thin-film lithium niobate photonics. ACS Photonics, 11, 1703(2024).

    [12] Y. Rah, Y. Jeong, S. Han et al. Low power coherent ising machine based on mechanical kerr nonlinearity. Phys. Rev. Lett., 130, 073802(2023).

    [13] Z. Fan, J. Lin, J. Dai et al. Photonic hopfield neural network for the Ising problem. Opt. Express, 31, 21340(2023).

    [14] J. Huang, Y. Fang, Z. Ruan. Antiferromagnetic spatial photonic Ising machine through optoelectronic correlation computing. Commun. Phys., 4, 242(2021).

    [15] L. Luo, Z. Mi, J. Huang et al. Wavelength-division multiplexing optical Ising simulator enabling fully programmable spin couplings and external magnetic fields. Sci. Adv., 9, eadg6238(2023).

    [16] H. Yamashita, K. Okubo, S. Shimomura et al. Low-rank combinatorial optimization and statistical learning by spatial photonic Ising machine. Phys. Rev. Lett., 131, 063801(2023).

    [17] D. Pierangeli, G. Marcucci, C. Conti. Adiabatic evolution on a spatial-photonic Ising machine. Optica, 7, 1535(2020).

    [18] D. Pierangeli, M. Rafayelyan, C. Conti et al. Scalable spin-glass optical simulator. Phys. Rev. Appl., 15, 034087(2021).

    [19] W. Sun, W. Zhang, Y. Liu et al. Quadrature photonic spatial Ising machine. Opt. Lett., 47, 1498(2022).

    [20] Y. Fang, J. Huang, Z. Ruan. Experimental observation of phase transitions in spatial photonic Ising machine. Phys. Rev. Lett., 127, 043902(2021).

    [21] T. Sakabe, S. Shimomura, Y. Ogura et al. Spatial-photonic Ising machine by space-division multiplexing with physically tunable coefficients of a multi-component model. Opt. Express, 31, 44127(2023).

    [22] M. C. Strinati, L. Bello, A. Pe’er et al. Theory of coupled parametric oscillators beyond coupled Ising spins. Phys. Rev. A, 100, 023835(2019).

    [23] D. Pierangeli, G. Marcucci, D. Brunner et al. Noise-enhanced spatial-photonic Ising machine. Nanophotonics, 9, 4109(2020).

    [24] M. Prabhu, C. Roques-Carmes, Y. Shen et al. Accelerating recurrent Ising machines in photonic integrated circuits. Optica, 7, 551(2020).

    [25] X. Ye, W. Zhang, S. Wang et al. 20736-node weighted max-cut problem solving by quadrature photonic spatial Ising machine(2023).

    [26] C. M. Bishop. Training with noise is equivalent to Tikhonov regularization. Neural Comput., 7, 108(1995).

    [27] M. A. Nahmias, T. F. De Lima, A. N. Tait et al. Photonic multiply-accumulate operations for neural networks. IEEE J. Sel. Top. Quantum Electron., 26, 7701518(2019).

    [28] D. A. Spielman, S.-H. Teng. Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time. J. ACM, 51, 385(2004).

    [29] D. A. Spielman, S.-H. Teng. Smoothed analysis: an attempt to explain the behavior of algorithms in practice. Commun. ACM, 52, 76(2009).

    [30] D. Arthur, B. Manthey, H. Röglin. Smoothed analysis of the k-means method. J. ACM, 58, 1(2011).

    [31] M. Etscheid, H. Röglin. Smoothed analysis of local search for the maximum-cut problem. ACM Trans. Algorithms, 13, 1(2017).

    [32] A. Lucas. Ising formulations of many NP problems. Front. Phys., 2, 74887(2014).

    [33] A. A. Schäffer. Simple local search problems that are hard to solve. SIAM J. Comput., 20, 56(1991).

    [34] X. Chen, C. Guo, E. V. Vlatakis-Gkaragkounis et al. Smoothed complexity of local Max-cut and binary max-CSP. Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, 1052(2020).

    [35] S. Kahruman, E. Kolotoglu, S. Butenko et al. On greedy construction heuristics for the MAX-CUT problem. Int. J. Comput. Sci. Eng., 3, 211(2007).