• Photonics Research
  • Vol. 12, Issue 7, 1427 (2024)
Zheng Yuan1,2, Chenchen Zhang1,2, Yuan Gao1,2, Wenxiang Yan1,2..., Xian Long1,2, Zhi-Cheng Ren1,2, Xi-Lin Wang1,2, Jianping Ding1,2,3,* and Hui-Tian Wang1,2,4|Show fewer author(s)
Author Affiliations
  • 1National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China
  • 2Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
  • 3Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics, Nanjing 210093, China
  • 4e-mail: htwang@nju.edu.cn
  • show less
    DOI: 10.1364/PRJ.520425 Cite this Article Set citation alerts
    Zheng Yuan, Chenchen Zhang, Yuan Gao, Wenxiang Yan, Xian Long, Zhi-Cheng Ren, Xi-Lin Wang, Jianping Ding, Hui-Tian Wang, "Dual-curvilinear beam enabled tunable manipulation of high- and low-refractive-index particles," Photonics Res. 12, 1427 (2024) Copy Citation Text show less
    References

    [1] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett., 11, 288-290(1986).

    [2] K. Svoboda, P. P. Mitra, S. M. Block. Fluctuation analysis of motor protein movement and single enzyme kinetics. Proc. Natl. Acad. Sci. USA, 91, 11782-11786(1994).

    [3] C. Bustamante, S. B. Smith, J. Liphardt. Single-molecule studies of DNA mechanics. Curr. Opin. Struct. Biol., 10, 279-285(2000).

    [4] A. Rodger, B. Nordén. Circular Dichroism and Linear Dichroism, 1(1997).

    [5] Y. Sokolov, D. Frydel, D. G. Grier. Hydrodynamic pair attractions between driven colloidal particles. Phys. Rev. Lett., 107, 158302(2011).

    [6] J. C. Crocker, D. G. Grier. Microscopic measurement of the pair interaction potential of charge-stabilized colloid. Phys. Rev. Lett., 73, 352-355(1994).

    [7] D. G. Grier. A revolution in optical manipulation. Nature, 424, 810-816(2003).

    [8] Y. Shen, X. Wang, Z. Xie. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl., 8, 90(2019).

    [9] Y. Yang, Y.-X. Ren, M. Chen. Optical trapping with structured light: a review. Adv. Photon., 3, 034001(2021).

    [10] Y. Shi, T. Zhu, J. Liu. Stable optical lateral forces from inhomogeneities of the spin angular momentum. Sci. Adv., 8, eabn2291(2022).

    [11] Y. Shi, T. Zhu, A. Q. Liu. Inverse optical torques on dielectric nanoparticles in elliptically polarized light waves. Phys. Rev. Lett., 129, 053902(2022).

    [12] B. Gao, J. Wen, G. Zhu. Precise measurement of trapping and manipulation properties of focused fractional vortex beams. Nanoscale, 14, 3123-3130(2022).

    [13] M. He, Y. Liang, X. Yun. Generalized perfect optical vortices with free lens modulation. Photon. Res., 11, 27-34(2023).

    [14] L. Zhu, X. Zhang, G. Rui. Optical skipping rope induced transverse OAM for particle orbital motion parallel to the optical axis. Nanophotonics, 12, 4351-4359(2023).

    [15] W. Wei, L. Zhu, Y. Tai. Cycloid-structured optical tweezers. Opt. Lett., 48, 972-975(2023).

    [16] D. Xu, Z. Mo, J. Jiang. Guiding particles along arbitrary trajectories by circular Pearcey-like vortex beams. Phys. Rev. A, 106, 013509(2022).

    [17] B. Yao, S. Yuan, G. Yang. Color tuning using scanning optical tweezers. Adv. Photon. Res., 4, 2300205(2023).

    [18] L. Zhu, Y. Tai, H. Li. Multidimensional optical tweezers synthetized by rigid-body emulated structured light. Photon. Res., 11, 1524-1534(2023).

    [19] K. Gahagan, G. J. Swartzlander. Optical vortex trapping of particles. Opt. Lett., 21, 827-829(1996).

    [20] K. Gahagan, G. Swartzlander. Trapping of low-index microparticles in an optical vortex. J. Opt. Soc. Am. B, 15, 524-534(1998).

    [21] K. Gahagan, G. Swartzlander. Simultaneous trapping of low-index and high-index microparticles observed with an optical-vortex trap. J. Opt. Soc. Am. B, 16, 533-537(1999).

    [22] V. Garcés-Chávez, K. Volke-Sepulveda, S. Chávez-Cerda. Transfer of orbital angular momentum to an optically trapped low-index particle. Phys. Lett. A, 66, 063402(2002).

    [23] Y. Liang, M. Lei, S. Yan. Rotating of low-refractive-index microparticles with a quasi-perfect optical vortex. Appl. Opt., 57, 79-84(2018).

    [24] X. Li, D. Dan, X. Yu. Concentric ring optical traps for orbital rotation of particles. Nanophotonics, 12, 4507-4517(2023).

    [25] J. Abacousnac, D. G. Grier. Dexterous holographic trapping of dark-seeking particles with Zernike holograms. Opt. Express, 30, 23568-23578(2022).

    [26] M. Mohammadnezhad, S. R. Saeed, A. Hassanzadeh. Theoretical simulation of Gaussian beam interferometric optical tweezers with symmetrical construction. J. Opt., 21, 105404(2019).

    [27] M. Mohammadnezhad, S. S. Abdulkareem, A. Hassanzadeh. Creation of rotating spiral structures using interfering Bessel beams for optical manipulation. Opt. Lett., 47, 4024-4027(2022).

    [28] M. Mohammadnezhad, S. R. Saeed, S. S. Abdulkareem. Light-driven nanomotors with reciprocating motion and high controllability based on interference techniques. Nanoscale Adv., 6, 1122-1126(2024).

    [29] J. A. Rodrigo, T. Alieva, E. Abramochkin. Shaping of light beams along curves in three dimensions. Opt. Express, 21, 20544-20555(2013).

    [30] J. A. Rodrigo, T. Alieva. Freestyle 3D laser traps: tools for studying light-driven particle dynamics and beyond. Optica, 2, 812-815(2015).

    [31] Z. Chen, T. Zeng, J. Ding. Reverse engineering approach to focus shaping. Opt. Lett., 41, 1929-1932(2016).

    [32] J. Gielis. A generic geometric transformation that unifies a wide range of natural and abstract shapes. Am. J. Bot., 90, 333-338(2003).

    [33] Z. Yuan, Y. Gao, Z. Wang. Curvilinear Poincaré vector beams. Chin. Opt. Lett., 19, 032602(2021).

    [34] L. Li, C. Chang, C. Yuan. High efficiency generation of tunable ellipse perfect vector beams. Photon. Res., 6, 1116-1123(2018).

    [35] B. Richards, E. Wolf. Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system. Proc. R. Soc. London Ser. A, 253, 358-379(1959).

    [36] M. Leutenegger, R. Rao, R. A. Leitgeb. Fast focus field calculations. Opt. Express, 14, 11277-11291(2006).

    [37] O. G. Rodríguez-Herrera, D. Lara, K. Y. Bliokh. Optical nanoprobing via spin-orbit interaction of light. Phys. Rev. Lett., 104, 253601(2010).

    [38] J. Lin, O. Rodríguez-Herrera, F. Kenny. Fast vectorial calculation of the volumetric focused field distribution by using a three-dimensional Fourier transform. Opt. Express, 20, 1060-1069(2012).

    [39] K. S. Youngworth, T. G. Brown. Focusing of high numerical aperture cylindrical-vector beams. Opt. Express, 7, 77-87(2000).

    [40] A. Bekshaev, K. Y. Bliokh, M. Soskin. Internal flows and energy circulation in light beams. J. Opt., 13, 053001(2011).

    [41] M. V. Berry. Optical currents. J. Opt. A, 11, 094001(2009).

    [42] J. Lu, V. Ginis, C.-W. Qiu. Polarization-dependent forces and torques at resonance in a microfiber-microcavity system. Phys. Rev. Lett., 130, 183601(2023).

    [43] D. B. Ruffner, D. G. Grier. Comment on ‘Scattering forces from the curl of the spin angular momentum of a light field’. Phys. Rev. Lett., 111, 059301(2013).

    [44] X. Wang, Y. Gao, Z. Chen. Dynamic shaping of vectorial optical fields based on two-dimensional blazed holographic grating. Chin. Phys. B, 29, 014208(2020).

    [45] Q. Wang, C.-H. Tu, H. He. Local angular momentum induced dual orbital effect. APL Photon., 7, 086102(2022).

    [46] V. Shvedov, A. R. Davoyan, C. Hnatovsky. A long-range polarization-controlled optical tractor beam. Nat. Photonics, 8, 846-850(2014).

    [47] E. K. Sackmann, A. L. Fulton, D. J. Beebe. The present and future role of microfluidics in biomedical research. Nature, 507, 181-189(2014).

    [48] Z. Zhang, S. C. Glotzer. Self-assembly of patchy particles. Nano Lett., 4, 1407-1413(2004).

    [49] M. Delcea, N. Sternberg, A. M. Yashchenok. Nanoplasmonics for dual-molecule release through nanopores in the membrane of red blood cells. ACS Nano, 6, 4169-4180(2012).

    [50] G. Bolognesi, M. S. Friddin, A. Salehi-Reyhani. Sculpting and fusing biomimetic vesicle networks using optical tweezers. Nat. Commun., 9, 1882(2018).

    Zheng Yuan, Chenchen Zhang, Yuan Gao, Wenxiang Yan, Xian Long, Zhi-Cheng Ren, Xi-Lin Wang, Jianping Ding, Hui-Tian Wang, "Dual-curvilinear beam enabled tunable manipulation of high- and low-refractive-index particles," Photonics Res. 12, 1427 (2024)
    Download Citation