• Chinese Optics Letters
  • Vol. 23, Issue 1, 011203 (2025)
Yue Shi1,2, Xiong Luo1,3,*, Peiyu Sun2, Jihui Dong1,4,**..., Lei Tang5, Jie Zhou1,3, Ke Wang1,3, Chunli Chen1,3, Yunshi Wang1,3 and Dingfu Zhou1,3,4,***|Show fewer author(s)
Author Affiliations
  • 1Southwest Institute of Technical Physics, Chengdu 610041, China
  • 2Science College, Civil Aviation Flight University of China, Guanghan 618307, China
  • 3Lidar and Device Laboratory, Southwest Institute of Technical Physics, Chengdu 610041, China
  • 4Key Laboratory of Laser Device Technology of China North Industries Group Corporation Limited, Chengdu 610041, China
  • 5China Research and Development Academy of Machinery Equipment, Beijing 100089, China
  • show less
    DOI: 10.3788/COL202523.011203 Cite this Article Set citation alerts
    Yue Shi, Xiong Luo, Peiyu Sun, Jihui Dong, Lei Tang, Jie Zhou, Ke Wang, Chunli Chen, Yunshi Wang, Dingfu Zhou, "Real-time synchronous detection of wind and aerosol using a coherent lidar," Chin. Opt. Lett. 23, 011203 (2025) Copy Citation Text show less
    References

    [1] R. Volkamer, J. L. Jimenez, F. San Martini et al. Secondary organic aerosol formation from anthropogenic air pollution: rapid and higher than expected. Geophys. Res. Lett., 33, L17811(2006).

    [2] J. H. Seinfeld, C. Bretherton, K. S. Carslaw et al. Improving our fundamental understanding of the role of aerosol-cloud interactions in the climate system. Proc. Natl. Acad. Sci. U.S.A., 113, 5781(2016).

    [3] M. Andreae, D. Rosenfeld. Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth Sci. Rev., 89, 13(2008).

    [4] Z. Li, W.-M. Lau, V. Ramanathan et al. Aerosol and monsoon climate interactions over Asia. Rev. Geophys., 54, 866(2016).

    [5] U. Lohmann, J. Feichter. Global indirect aerosol effects: a review. Atmos. Chem. Phys., 5, 715(2005).

    [6] H. Yu, Y. Kaufman, M. Chin et al. A review of measurement-based assessments of the aerosol direct radiative effect and forcing. Atmos. Chem. Phys., 6, 613(2006).

    [7] Y. Yang, L. M. Russell, S. Lou et al. Dust-wind interactions can intensify aerosol pollution over eastern China. Nat. Commun., 8, 15333(2017).

    [8] D. W. Griffin, C. A. Kellogg, E. A. Shinn. Dust in the wind: long range transport of dust in the atmosphere and its implications for global public and ecosystem health. Global Change Human Health, 2, 20(2001).

    [9] E. L. Anderson, P. Turnham, J. R. Griffin et al. Consideration of the aerosol transmission for COVID-19 and public health. Risk Anal., 40, 902(2020).

    [10] R. Menzies, R. Hardesty. Coherent doppler lidar for measurements of wind fields. Proc. IEEE, 77, 449(1989).

    [11] M. J. Kavaya, J. Y. Beyon, G. J. Koch et al. The Doppler aerosol wind (dawn) air borne, wind-profiling coherent-detection lidar system: overview and preliminary flight results. J. Atmos. Ocean. Technol., 31, 826(2014).

    [12] Z.-H. Yang, Y.-K. Zhang, J. Zhou et al. Real-time wind field measurements using all-fiber mobile Doppler wind lidar. Opt. Eng., 59, 034107(2020).

    [13] O. Kliebisch, H. Uittenbosch, J. Thurn et al. Coherent doppler wind lidar with real-time wind processing and low signal-to-noise ratio reconstruction based on a convolutional neural network. Opt. Express, 30, 5540(2022).

    [14] C. Liang, C. Wang, X. Xue et al. Meter-scale and sub-second-resolution coherent doppler wind lidar and hyperfine wind observation. Opt. Lett., 47, 3179(2022).

    [15] J. Chu, Y. Han, D. Sun et al. Statistical interpolation technique based on coherent Doppler lidar for real-time horizontal wind shear observations and forewarning. Opt. Eng., 60, 046102(2021).

    [16] G. J. Koch, J. Y. Beyon, L. J. Cowen et al. Three-dimensional wind profiling of offshore wind energy areas with airborne Doppler lidar. J. Appl. Remote Sens., 8, 083662(2014).

    [17] R. Krishnamurthy, A. Choukulkar, R. Calhoun et al. Coherent doppler lidar for wind farm characterization. Wind Energy, 16, 189(2013).

    [18] S. Wu, J. Yin, B. Liu et al. Characterization of turbulent wake of wind turbine by coherent Doppler lidar. Proc. SPIE, 9262, 92620H(2014).

    [19] Z. Liu, L. Yuan, J. Tang et al. Coherent Doppler lidar wind retrieval for a typhoon based on the genetic simulated annealing algorithm. Chin. Opt. Lett., 22, 040101(2024).

    [20] R. Frehlich. Coherent Doppler lidar signal covariance including wind shear and wind turbulence. Appl. Opt., 33, 6472(1994).

    [21] S. M. Hannon, J. A. L. Thomson, S. W. Henderson et al. Windshear, turbulence, and wake vortex characterization using pulsed solid state coherent lidar. Proc. SPIE, 2464, 94(1995).

    [22] M. Sjöholm, T. Mikkelsen, J. Mann et al. Spatial averaging-effects on turbulence measured by a continuous-wave coherent lidar. Meteorol. Z., 18, 281(2009).

    [23] J. Yuan, H. Xia, T. Wei et al. Identifying cloud, precipitation, windshear, and turbulence by deep analysis of the power spectrum of coherent doppler wind lidar. Opt. Express, 28, 37406(2020).

    [24] P. Jiang, J. Yuan, K. Wu et al. Turbulence detection in the atmospheric boundary layer using coherent Doppler wind lidar and microwave radiometer. Remote Sens., 14, 2951(2022).

    [25] S. Chen, J. Yu, M. Petros et al. Double-pass Tm:Ho:YLF amplifier at 2.05 µm for spaceborne eye-safe coherent Doppler wind lidar and CO2 differential absorption lidar (DIAL). Proc. SPIE, 4893, 217(2003).

    [26] F. Gibert, D. Edouart, C. Cénac et al. 2-µm Ho emitter-based coherent DIAL for CO2 pro- filing in the atmosphere. Opt. Lett., 40, 3093(2015).

    [27] N. Cezard, S. L. Mehaute, J. Le Gouët et al. Performance assessment of a coherent dial doppler fiber lidar at 1645 nm for remote sensing of methane and wind. Opt. Express, 28, 22345(2020).

    [28] R. T. Menzies, D. M. Tratt. Airborne CO2 coherent lidar for measurements of atmospheric aerosol and cloud backscatter. Appl. Opt., 33, 5698(1994).

    [29] F. Chouza, O. Reitebuch, S. Groß et al. Retrieval of aerosol backscatter and extinction from airborne coherent Doppler wind lidar measurements. Atmos. Meas. Tech., 8, 2909(2015).

    [30] S. Abdelazim, D. Santoro, M. F. Arend et al. Development and operational analysis of an all-fiber coherent doppler lidar system for wind sensing and aerosol profiling. IEEE Trans. Geosci. Remote Sens., 53, 6495(2015).

    [31] X. Dong, Y. Hu, S. Xu et al. Echoing characteristics of coherent lidar in different aerosol environments. Acta Opt. Sin., 38, 0101001(2018).

    [32] C. Wang, M. Jia, H. Xia et al. Relationship analysis of PM2.5 and boundary layer height using an aerosol and turbulence detection lidar. Atmos. Meas. Tech., 12, 3303(2019).

    [33] H. K. Hughes. The physical meaning of Parseval’s theorem. Am. J. Phys., 33, 99(1965).

    [34] V. A. Banakh, I. N. Smalikho, C. Werner. Effect of aerosol particle microstructure on cw Doppler lidar signal statistics. Appl. Opt., 39, 5393(2000).

    [35] V. A. Banakh, I. N. Smalikho. Coherent Doppler Wind Lidars in a Turbulent Atmosphere(2013).

    [36] R. G. Frehlich, M. J. Kavaya. Coherent laser radar performance for general atmospheric refractive turbulence. Appl. Opt., 30, 5325(1991).

    [37] J. D. Klett. Lidar inversion with variable backscatter/extinction ratios. Appl. Opt., 24, 1638(1985).

    [38] G. J. McCartney. Optics of Atmoshpere(1976).

    [39] D. Han, W. Liu, J. Liu et al. Retrieval method for aerosol mass concentration vertical distribution. Chin. J. Lasers, 33, 1567(2006).

    Yue Shi, Xiong Luo, Peiyu Sun, Jihui Dong, Lei Tang, Jie Zhou, Ke Wang, Chunli Chen, Yunshi Wang, Dingfu Zhou, "Real-time synchronous detection of wind and aerosol using a coherent lidar," Chin. Opt. Lett. 23, 011203 (2025)
    Download Citation