• Photonics Research
  • Vol. 5, Issue 3, 219 (2017)
Lin Wang, Minggui Wan, Zhenkun Shen, Xudong Wang, Yuan Cao, Xinhuan Feng*, and Bai-ou Guan
Author Affiliations
  • Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
  • show less
    DOI: 10.1364/PRJ.5.000219 Cite this Article Set citation alerts
    Lin Wang, Minggui Wan, Zhenkun Shen, Xudong Wang, Yuan Cao, Xinhuan Feng, Bai-ou Guan. Wavelength-swept fiber laser based on bidirectional used linear chirped fiber Bragg grating[J]. Photonics Research, 2017, 5(3): 219 Copy Citation Text show less
    References

    [1] T. Klein, W. Wieser, L. Reznicek, A. Neubauer, A. Kampik, R. Huber. Multi-MHz retinal OCT. Biomed. Opt. Express, 4, 1890-1908(2013).

    [2] C. Y. Ryu, C. S. Hong. Development of fiber Bragg grating sensor system using wavelength-swept fiber laser. Smart Mater. Struct., 11, 468-473(2002).

    [3] D. P. Zhou, Z. G. Qin, W. H. Li, L. Chen, X. Y. Bao. Distributed vibration sensing with time-resolved optical frequency-domain reflectometry. Opt. Express, 20, 13138-13145(2012).

    [4] S. S. Jyu, S. F. Liu, W. W. Hsiang, Y. Lai. Fiber dispersion measurement with a swept-wavelength pulse light source. IEEE Photon. Technol. Lett., 22, 598-600(2010).

    [5] S. H. Yun, C. Boudoux, G. J. Tearney, B. E. Bouma. High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter. Opt. Lett., 28, 1981-1983(2003).

    [6] R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, K. Hsu. Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles. Opt. Express, 13, 3513-3528(2005).

    [7] R. Huber, M. Wojtkowski, J. G. Fujimoto. Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography. Opt. Express, 14, 3225-3237(2006).

    [8] R. Huber, D. C. Adler, J. G. Fujimoto. Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s. Opt. Lett., 31, 2975-2977(2006).

    [9] M. Y. Jeon, J. Zhang, Q. Wang, Z. P. Chen. High-speed and wide bandwidth Fourier domain mode-locked wavelength-swept laser with multiple SOAs. Opt. Express, 16, 2547-2554(2008).

    [10] W. Wieser, T. Klein, D. C. Adler, F. Trepanier, C. M. Eigenwillig, S. Karpf, J. M. Schmitt, R. Huber. Extended coherence length megahertz FDML and its application for anterior segment imaging. Biomed. Opt. Express, 3, 2647-2657(2012).

    [11] S. Yamashita, M. Asano. Wide and fast wavelength-tunable mode-locked fiber laser based on dispersion tuning. Opt. Express, 14, 9299-9306(2006).

    [12] Y. Takubo, S. Yamashita. In vivo OCT imaging using wavelength-swept fiber laser based on dispersion tuning. IEEE Photon. Technol. Lett., 24, 979-981(2012).

    [13] Y. Takubo, S. Yamashita. High-speed dispersion-tuned wavelength-swept fiber laser using a reflective SOA and a chirped FBG. Opt. Express, 21, 5130-5139(2013).

    [14] M. G. Wan, L. Wang, F. Li, Y. Cao, X. D. Wang, X. H. Feng, B. O. Guan, P. K. A. Wai. Rapid, k-space linear wavelength scanning laser source based on recirculating frequency shifter. Opt. Express, 24, 27614-27621(2016).

    [15] G. Gavioli, E. Torrengo, G. Bosco, A. Carena, S. Savory, F. Forghieri, P. Poggiolini. Ultra-narrow-spacing 10-channel 1.12  Tb/s D-WDM long-haul transmission over uncompensated SMF and NZDSF. IEEE Photon. Technol. Lett., 22, 1419-1421(2010).

    [16] S. Moon, D. Y. Kim. Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source. Opt. Express, 14, 11575-11584(2006).

    [17] J. Xu, C. Zhang, J. Xu, K. K. Wong, K. K. Tsia. Megahertz all-optical swept-source optical coherence tomography based on broadband amplified optical time-stretch. Opt. Lett., 39, 622-625(2014).

    [18] T. J. Ahn, Y. Park, J. Azana. Ultrarapid optical frequency-domain reflectometry based upon dispersion-induced time stretching: principle and applications. IEEE J. Sel. Top. Quantum, 18, 148-165(2012).

    [19] S. Tozburun, M. Siddiqui, B. J. Vakoc. A rapid, dispersion-based wavelength-stepped and wavelength-swept laser for optical coherence tomography. Opt. Express, 22, 3414-3424(2014).

    [20] K. Chan, C. Shu. Compensated dispersion tuning in harmonically mode-locked fiber laser. Appl. Phys. Lett., 75, 891-893(1999).

    [21] J. F. Brennan, E. Hernadez, J. A. Valenti, P. G. Sinha, M. R. Matthews, D. E. Elder, G. A. Beauchesne, C. H. Byrd. Wide-bandwidth chirped fiber Bragg gratings with low delay ripple amplitude. U.S. patent(2004).

    [22] K. Ennser, M. N. Zervas, R. I. Laming. Optimization of apodized linearly chirped fiber gratings for optical communications. IEEE J. Quantum Electron., 34, 770-778(1998).

    [23] Z. Wang, Q. Lin, Y. T. Jian, L. L. Liu, C. Q. Wu. Dispersion measurement of the semiconductor optical amplifiers. Proc. SPIE, 9233, 92331J(2014).

    CLP Journals

    [1] Xiaofeng Wang, Yongxing Guo, Li Xiong. Hybrid fiber Bragg grating sensor for vibration and temperature monitoring of a train bearing[J]. Chinese Optics Letters, 2018, 16(7): 070604

    Lin Wang, Minggui Wan, Zhenkun Shen, Xudong Wang, Yuan Cao, Xinhuan Feng, Bai-ou Guan. Wavelength-swept fiber laser based on bidirectional used linear chirped fiber Bragg grating[J]. Photonics Research, 2017, 5(3): 219
    Download Citation