• Optics and Precision Engineering
  • Vol. 30, Issue 19, 2379 (2022)
Jingang LIN, Dongnian LI*, Chengjun CHEN, and Zhengxu ZHAO
Author Affiliations
  • School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao266520, China
  • show less
    DOI: 10.37188/OPE.20223019.2379 Cite this Article
    Jingang LIN, Dongnian LI, Chengjun CHEN, Zhengxu ZHAO. Global hand pose estimation based on pixel voting[J]. Optics and Precision Engineering, 2022, 30(19): 2379 Copy Citation Text show less
    References

    [1] A TKACH, A TAGLIASACCHI, E REMELLI et al. Online generative model personalization for hand tracking. ACM Transactions on Graphics, 36, 243(2017).

    [2] 2李东年, 周以齐. 采用改进粒子群优化粒子滤波的三维人手跟踪[J]. 光学 精密工程, 2014, 22(10): 2870-2878. doi: 10.3788/ope.20142210.2870LID N, ZHOUY Q. Three dimensional hand tracking by improved particle swarm optimized particle filter[J]. Opt. Precision Eng., 2014, 22(10): 2870-2878.(in Chinese). doi: 10.3788/ope.20142210.2870

    [3] X TANG, T Y WANG, C W FU. Towards accurate alignment in real-time 3D hand-mesh reconstruction, 11678-11687(2021).

    [4] F XIONG, B S ZHANG, Y XIAO et al. A2J: anchor-to-joint regression network for 3D articulated pose estimation from a single depth image, 793-802(2019).

    [5] J TAYLOR, V TANKOVICH, D H TANG et al. Articulated distance fields for ultra-fast tracking of hands interacting. ACM Transactions on Graphics, 36, 244(2017).

    [6] P KREJOV, A GILBERT, R BOWDEN. Guided optimisation through classification and regression for hand pose estimation. Computer Vision and Image Understanding, 155, 124-138(2017).

    [7] X H CHEN, G J WANG, H K GUO et al. Pose guided structured region ensemble network for cascaded hand pose estimation. Neurocomputing, 395, 138-149(2020).

    [8] W C CHENG, J H PARK, J H KO. HandFoldingNet: a 3D hand pose estimation network using multiscale-feature guided folding of a 2D hand skeleton, 11240-11249(2021).

    [9] P F REN, H F SUN, W T HUANG et al. Spatial-aware stacked regression network for real-time 3D hand pose estimation. Neurocomputing, 437, 42-57(2021).

    [10] 10李伟强, 雷航, 张静玉, 等. 基于标签分布学习的三维手部姿态估计[J]. 计算机应用, 2021, 41(2): 550-555.LIW Q, LEIH, ZHANGJ Y, et al. 3D hand pose estimation based on label distribution learning[J]. Journal of Computer Applications, 2021, 41(2): 550-555.(in Chinese)

    [11] W T HUANG, P F REN, J Y WANG et al. AWR: adaptive weighting regression for 3D hand pose estimation. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 11061-11068(2020).

    [12] 12危德健, 王文明, 王全玉, 等. 改进的基于锚点的三维手部姿态估计网络[J]. 计算机应用, 2022, 42(3): 953-959.WEID J, WANGW M, WANGQ Y, et al. Improved 3D hand pose estimation network based on anchor[J]. Journal of Computer Applications, 2022, 42(3): 953-959.(in Chinese)

    [13] G MOON, K M LEE. I2L-MeshNet: image-to-lixel prediction network for accurate 3D human pose and mesh estimation from a single RGB image, 752-768(2020).

    [14] 14熊杰, 彭军, 杨文姬, 等. 多尺度高分辨率保持和视角不变的手姿态估计[J]. 计算机工程与应用, 2021, 57(14): 148-157. doi: 10.3778/j.issn.1002-8331.2004-0078XIONGJ, PENGJ, YANGW J, et al. Multi-scale high-resolution preserving and perspective-invariant hand pose estimation[J]. Computer Engineering and Applications, 2021, 57(14): 148-157.(in Chinese). doi: 10.3778/j.issn.1002-8331.2004-0078

    [15] M R LI, Y GAO, N SANG. Exploiting learnable joint groups for hand pose estimation. 2020: arXiv, 2012-09496. https://arxiv.org/abs/2012.09496

    [16] T SHARP, C KESKIN, D ROBERTSON et al. Accurate, robust, and flexible real-time hand tracking, 3633-3642(2015).

    [17] H LIANG, J S YUAN, J LEE et al. Hough forest with optimized leaves for global hand pose estimation with arbitrary postures. IEEE Transactions on Cybernetics, 49, 527-541(2019).

    [18] N RUIZ, E CHONG, J M REHG. Fine-grained head pose estimation without keypoints, 2155-215509(2018).

    [19] T Y YANG, Y T CHEN, Y LIN et al. FSA-net: learning fine-grained structure aggregation for head pose estimation from a single image, 1087-1096(2019).

    [20] 20车云龙, 齐越. 基于深度图像的手部姿态估计综述[J]. 计算机辅助设计与图形学学报, 2021, 33(11): 1635-1648. doi: 10.3724/sp.j.1089.2021.18788CHEY L, QIY. A survey on depth based hand pose estimation[J]. Journal of Computer-Aided Design & Computer Graphics, 2021, 33(11): 1635-1648.(in Chinese). doi: 10.3724/sp.j.1089.2021.18788

    [21] L C CHEN, Y K ZHU, G PAPANDREOU et al. Encoder-decoder with atrous separable convolution for semantic image segmentation, 801-818(2018).

    [22] K M HE, X Y ZHANG, S Q REN et al. Deep residual learning for image recognition, 770-778(2016).

    [23] 23徐胜军, 欧阳朴衍, 郭学源, 等. 多尺度特征融合空洞卷积 ResNet遥感图像建筑物分割[J]. 光学 精密工程, 2020, 28(7): 1588-1599. doi: 10.37188/ope.20202807.1588XUSH J, OUYANGP Y, GUOX Y, et al. Building segmentation in remote sensing image based on multiscale-feature fusion dilated convolution resnet[J]. Opt. Precision Eng., 2020, 28(7): 1588-1599.(in Chinese). doi: 10.37188/ope.20202807.1588

    [24] O RUSSAKOVSKY, J DENG, H SU et al. ImageNet large scale visual recognition challenge. International Journal of Computer Vision, 115, 211-252(2015).

    [25] 25刘桂雄, 黄坚. 基于标签预留Softmax算法的机器视觉检测鉴别语义分割迁移学习技术[J]. 光学 精密工程, 2022, 30(1): 117-125. doi: 10.37188/OPE.20223001.0117LIUG X, HUANGJ. Transfer learning techniques for semantic segmentation of machine vision inspection and identification based on label-reserved Softmax algorithms[J]. Optics and Precision Engineering, 2022, 30(1): 117-125.(in Chinese). doi: 10.37188/OPE.20223001.0117

    [26] Y ZHOU, C BARNES, J W LU et al. On the continuity of rotation representations in neural networks, 5738-5746(2019).

    [27] Y XIANG, T SCHMIDT, V NARAYANAN et al. Posecnn: A Convolutional Neural Network for 6D Object Pose Estimation In Cluttered Scenes. arXiv preprint(2017).

    Jingang LIN, Dongnian LI, Chengjun CHEN, Zhengxu ZHAO. Global hand pose estimation based on pixel voting[J]. Optics and Precision Engineering, 2022, 30(19): 2379
    Download Citation