• NUCLEAR TECHNIQUES
  • Vol. 47, Issue 8, 080601 (2024)
Zhenzhe HAN1 and Pingwei ZHENG1,2,*
Author Affiliations
  • 1School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, China
  • 2Demonstration Base for International Science and Technology Cooperation on Nuclear Energy and Nuclear Safety, University of South China, Hengyang 421001, China
  • show less
    DOI: 10.11889/j.0253-3219.2024.hjs.47.080601 Cite this Article
    Zhenzhe HAN, Pingwei ZHENG. Numerical investigation of Tokamak runaway current suppression by using massive deuterium-argon/neon gas mixture injection[J]. NUCLEAR TECHNIQUES, 2024, 47(8): 080601 Copy Citation Text show less
    References

    [1] Smith H, Helander P, Eriksson L G et al. Runaway electrons and the evolution of the plasma current in tokamak disruption[J]. Physics of Plasmas, 13, 102502(2006).

    [2] Yoshino R, Nakamura Y, Neyatani Y. Avoidance of VDEs during plasma current quench in JT-60U[J]. Nuclear Fusion, 36, 295-307(1996).

    [3] Loarte A, Riccardo V, Martin-Solís J R et al. Magnetic energy flows during the current quench and termination of disruption with runaway current plateau formation in JET and implications for ITER[J]. Nuclear Fusion, 51, 073004(2011).

    [4] Li Y L, Sun J Z, Zhang Y P et al. Simulation of runaway electron generation and diffusion during major disruption in the HL-2A tokamak[J]. Fusion Engineering and Design, 89, 1019-1023(2014).

    [5] Dreicer H. Electron and ion runaway in a fully ionized gas. II[J]. Physical Review, 117, 329-342(1960).

    [6] Smith H M, Fehér T, Fülöp T et al. Runaway electron generation in tokamak disruption[J]. Plasma Physics and Controlled Fusion, 51, 124008(2009).

    [7] Fehér T, Smith H M, Fülöp T et al. Simulation of runaway electron generation during plasma shutdown by impurity injection in ITER[J]. Plasma Physics and Controlled Fusion, 53, 035014(2011).

    [8] Berger E, Pusztai I, Newton S L et al. Runaway dynamics in reactor-scale spherical tokamak disruption[J]. Journal of Plasma Physics, 88, 905880611(2022).

    [9] Zhang Y P, Tong R H, Yang Z Y et al. Recent progress on the control and mitigation of runaway electrons and disruption prediction in the HL-2A and J-TEXT tokamaks[J]. Reviews of Modern Plasma Physics, 7, 1-39(2023).

    [10] Hesslow L, Embréus O, Vallhagen O et al. Influence of massive material injection on avalanche runaway generation during tokamak disruption[J]. Nuclear Fusion, 59, 084004(2019).

    [11] Baylor L R, Meitner S J, Gebhart T E et al. Shattered pellet injection technology design and characterization for disruption mitigation experiments[J]. Nuclear Fusion, 59, 066008(2019).

    [12] JI Huajian, ZHANG Hongming, YANG Xiuda et al. Evaluation of plasma impurity concentration during radiative divertor operation mode on EAST[J]. Nuclear Techniques, 45, 030501(2022).

    [13] Vallhagen O, Embreus O, Pusztai I et al. Runaway dynamics in the DT phase of ITER operations in the presence of massive material injection[J]. Journal of Plasma Physics, 86, 475860401(2020).

    [14] Hoppe M, Embreus O, Fülöp T. DREAM: a fluid-kinetic framework for tokamak disruption runaway electron simulations[J]. Computer Physics Communications, 268, 108098(2021).

    [15] Breizman B N, Aleynikov P, Hollmann E M et al. Physics of runaway electrons in tokamaks[J]. Nuclear Fusion, 59, 083001(2019).

    [16] Helander P, Smith H, Fülp T et al. Electron kinetics in a cooling plasma[J]. Physics of Plasmas, 11, 5704-5709(2004).

    [17] Papp G, Fülöp T, Fehér T et al. The effect of ITER-like wall on runaway electron generation in JET[J]. Nuclear Fusion, 53, 123017(2013).

    [18] Connor J W, Hastie R J. Relativistic limitations on runaway electrons[J]. Nuclear Fusion, 15, 415-424(1975).

    [19] Wei Y N, Yan W, Chen Z Y et al. Dissipation of runaway current by massive gas injection on J-TEXT[J]. Plasma Physics and Controlled Fusion, 62, 025002(2020).

    [20] Rosenbluth M N, Putvinski S V. Theory for avalanche of runaway electrons in tokamaks[J]. Nuclear Fusion, 37, 1355-1362(1997).

    [21] Fehér T, Smith H M, Fülöp T et al. Simulation of runaway electron generation during plasma shutdown by impurity injection in ITER[J]. Plasma Physics and Controlled Fusion, 53, 035014(2011).

    [22] Berger E, Pusztai I, Newton S L et al. Runaway dynamics in reactor-scale spherical tokamak disruptions[J]. Journal of Plasma Physics, 88, 905880611(2022).

    [23] Summers H P, Dickson W J, O'Mullane M G et al. Ionization state, excited populations and emission of impurities in dynamic finite density plasmas: I. The generalized collisional-radiative model for light elements[J]. Plasma Physics and Controlled Fusion, 48, 263-294(2006).

    [24] Duan X R, Xu M, Zhong W L et al. Progress of HL-2A experiments and HL-2M program[J]. Nuclear Fusion, 62, 042020(2022).

    [25] Vallhagen O, Pusztai I, Hoppe M et al. Effect of two-stage shattered pellet injection on tokamak disruption[J]. Nuclear Fusion, 62, 112004(2022).

    Zhenzhe HAN, Pingwei ZHENG. Numerical investigation of Tokamak runaway current suppression by using massive deuterium-argon/neon gas mixture injection[J]. NUCLEAR TECHNIQUES, 2024, 47(8): 080601
    Download Citation