• Chinese Journal of Lasers
  • Vol. 48, Issue 7, 701001 (2021)
Zhao Qikai1、2, Cong Zhenhua1、2, Liu Zhaojun1、2, Zhang Xingyu1、2, and Zhao Zhigang1、2、*
Author Affiliations
  • 1School of Information Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
  • 2Shandong Provincial Key Laboratory of Laser Technology and Application, Qingdao, Shandong 266237, China
  • show less
    DOI: 10.3788/CJL202148.0701001 Cite this Article Set citation alerts
    Zhao Qikai, Cong Zhenhua, Liu Zhaojun, Zhang Xingyu, Zhao Zhigang. Hundred Microjoule Femtosecond Fiber Chirped Pulse Amplification Laser System[J]. Chinese Journal of Lasers, 2021, 48(7): 701001 Copy Citation Text show less
    References

    [1] Park C, Farson D F. Precise machining of disk shapes from thick metal substrates by femtosecond laser ablation[J]. The International Journal of Advanced Manufacturing Technology, 83, 2049-2056(2016). http://link.springer.com/article/10.1007/s00170-015-7672-3

    [2] Juodkazis S, Mizeikis V, Misawa H. Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications[J]. Journal of Applied Physics, 106, 051101(2009). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5246769

    [3] Reduzzi M, Carpeggiani P, Kühn S et al. Advances in high-order harmonic generation sources for time-resolved investigations[J]. Journal of Electron Spectroscopy and Related Phenomena, 204, 257-268(2015).

    [4] Ozulken K, Cabot F, Yoo S H. Applications of femtosecond lasers in ophthalmic surgery[J]. Expert Review of Medical Devices, 10, 115-124(2013). http://informahealthcare.com/doi/abs/10.1586/erd.12.59

    [5] Juhasz T, Djotyan G, Loesel F H et al. Applications of femtosecond lasers in corneal surgery[J]. Laser Physics, 10, 495-500(2000). http://d.wanfangdata.com.cn/periodical/90d63429f4b4fc5c92117e1d0d6a5965

    [6] Morin F, Druon F, Hanna M et al. Microjoule femtosecond fiber laser at 1.6 μm for corneal surgery applications[J]. Optics Letters, 34, 1991-1993(2009).

    [7] Ovsianikov A, Ostendorf A, Chichkov B N. Three-dimensional photofabrication with femtosecond lasers for applications in photonics and biomedicine[J]. Applied Surface Science, 253, 6599-6602(2007). http://www.sciencedirect.com/science/article/pii/S0169433207001250

    [8] Carley R E, Heesel E, Fielding H H. Femtosecond lasers in gas phase chemistry[J]. Chemical Society Reviews, 34, 949-969(2005). http://www.ncbi.nlm.nih.gov/pubmed/16239996

    [9] Gurevich E L, Hergenröder R. Femtosecond laser-induced breakdown spectroscopy: physics, applications, and perspectives[J]. Applied Spectroscopy, 61, 233A-242A(2007).

    [10] Franssen G C, Schleijpen H M A, van den Heuvel J C et al. Femtosecond lasers for countermeasure applications[J]. SPIE, 7483, 748309(2009).

    [11] Fermann M E, Hartl I. Erratum: ultrafast fibre lasers[J]. Nature Photonics, 7, 1006(2013). http://www.nature.com/nphoton/journal/v7/n12/full/nphoton.2013.319.html

    [12] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 56, 219-221(1985). http://www.sciencedirect.com/science/article/pii/0030401885901518

    [13] Backus S, Durfee C G III, Murnane M M et al. High power ultrafast lasers[J]. Review of Scientific Instruments, 69, 1207-1223(1998).

    [14] Maurer R D. Optical waveguide light source: US3809549[P](1972).

    [15] Müller M, Klenke A, Steinkopff A et al. 3.5 kW coherently combined ultrafast fiber laser[J]. Optics Letters, 43, 6037-6040(2018). http://www.osapublishing.org/ol/abstract.cfm?uri=ol-43-24-6037

    [16] Müller M, Aleshire C, Klenke A et al. 10.4 kW coherently combined ultrafast fiber laser[J]. Optics Letters, 45, 3083-3086(2020). http://arxiv.org/abs/2101.08499v1

    [17] Röser F, Schimpf D, Schmidt O et al. 90 W average power 100 μJ energy femtosecond fiber chirped-pulse amplification system[J]. Optics Letters, 32, 2230-2232(2007).

    [18] Rothhardt J, Hädrich S, Carstens H et al. 1 MHz repetition rate hollow fiber pulse compression to sub-100-fs duration at 100 W average power[J]. Optics Letters, 36, 4605-4607(2011).

    [19] Wan P, Yang L M, Liu J. All fiber-based Yb-doped high energy, high power femtosecond fiber lasers[J]. Optics Express, 21, 29854-29859(2013).

    [20] Kim K, Peng X, Lee W et al. Monolithic polarization maintaining fiber chirped pulse amplification (CPA) system for high energy femtosecond pulse generation at 1.03 μm[J]. Optics Express, 23, 4766-4770(2015).

    [21] Zhao Z G, Kobayashi Y. Ytterbium fiber-based, 270 fs, 100 W chirped pulse amplification laser system with 1 MHz repetition rate[J]. Applied Physics Express, 9, 012701(2016).

    [22] Manchee C P K, Möller J, Miller R J D. Highly stable, 100 W average power from fiber-based ultrafast laser system at 1030 nm based on single-pass photonic-crystal rod amplifier[J]. Optics Communications, 437, 6-10(2019).

    [23] Xiang X J, Li J B, Zhou D D et al. High-peak-power fiber pulse laser system[J]. Chinese Journal of Lasers, 45, 0601002(2018).

    [24] Yang P L, Hao T, Hu Z Q et al. Highly stable Yb-fiber laser amplifier of delivering 32-μJ, 153-fs pulses at 1-MHz repetition rate[J]. Applied Physics B, 124, 1-6(2018).

    [25] Zhou F Q, Yuan S, Guo Z R et al. High power compact fiber femtosecond laser amplification system[J]. Laser & Optoelectronics Progress, 55, 103201(2018).

    [26] Li H J, Bu X B, Shi Y H et al. High-power chirped pulse amplification based on Yb-doped rod-type PCF and nonlinear amplifying loop mirror oscillator[J]. SPIE, 1143, 114370Q(2020). http://www.researchgate.net/publication/339895795_High-power_chirped_pulse_amplification_based_on_Yb-doped_rod-type_PCF_and_nonlinear_amplifying_loop_mirror_oscillator

    [27] Bai Z N, Bai Z X, Sun X L et al. A 33.2 W high beam quality chirped-pulse amplification-based femtosecond laser for industrial processing[J]. Materials, 13, 2841(2020). http://www.researchgate.net/publication/342443301_A_332_W_High_Beam_Quality_Chirped-Pulse_Amplification-Based_Femtosecond_Laser_for_Industrial_Processing/download

    [28] Zhang Y, Zhang Y, Zhang Y et al. High-power pre-chirp managed amplification of circularly polarized pulses using high-dispersion chirped mirrors as a compressor[J]. OSA Continuum, 3, 1988-1998(2020). http://www.researchgate.net/publication/342688059_High-power_pre-chirp_managed_amplificationof_circularly_polarized_pulses_using_highdispersion_chirped_mirrors_as_compressor

    [29] Limpert J, Clausnitzer T, Liem A et al. High-average-power femtosecond fiber chirped-pulse amplification system[J]. Optics Letters, 28, 1984-1986(2003).

    [30] Hao J Y, Liu B W, Song H Y et al. Femtosecond fiber amplification system based on third-order dispersion compensation technique[J]. Laser & Optoelectronics Progress, 55, 051404(2018).

    [31] Grüner-Nielsen L, Jakobsen D, Jespersen K G et al. A stretcher fiber for use in fs chirped pulse Yb amplifiers[J]. Optics Express, 18, 3768-3773(2010). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-4-3768

    [32] Niu J, Liu B W, Song H Y et al. Femtosecond chirped-pulse amplifier system based on spectrum control and dispersion optimization[J]. Chinese Journal of Lasers, 47, 0101006(2020).

    [33] Andrew W. Ultrafast optics[M]. Zheng Z,Zhao X,Liu J S,et al, Transl, 308-309(2015).

    [34] Martinez O. 3000 times grating compressor with positive group velocity dispersion: application to fiber compensation in 1.3-1.6 μm region[J]. IEEE Journal of Quantum Electronics, 23, 59-64(1987).

    [35] Treacy E. Optical pulse compression with diffraction gratings[J]. IEEE Journal of Quantum Electronics, 5, 454-458(1969). http://ieeexplore.ieee.org/document/1076303/

    [36] Ruiz-de-la-Cruz A, Rangel-Rojo R. Multi-pass confocal ultra-short pulse amplifier[J]. Revista Mexicana De Fisica, 51, 488-493(2005). http://www.oalib.com/paper/2620080

    [37] Cheriaux G, Rousseau P, Salin F et al. Aberration-free stretcher design for ultrashort-pulse amplification[J]. Optics Letters, 21, 414-416(1996).

    Zhao Qikai, Cong Zhenhua, Liu Zhaojun, Zhang Xingyu, Zhao Zhigang. Hundred Microjoule Femtosecond Fiber Chirped Pulse Amplification Laser System[J]. Chinese Journal of Lasers, 2021, 48(7): 701001
    Download Citation