• Bulletin of the Chinese Ceramic Society
  • Vol. 41, Issue 6, 2153 (2022)
CHEN Yang1、2, DENG Chengji2, LOU Xiaoming1, DING Jun2, and YU Chao2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: Cite this Article
    CHEN Yang, DENG Chengji, LOU Xiaoming, DING Jun, YU Chao. Research Progress on Structure and Property Optimization of Low-Carbon MgO-C Refractories[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(6): 2153 Copy Citation Text show less
    References

    [2] HALDER D, MIDYA P R, DAS S, et al. Amorphous carbon nanotubes incorporated MgO-graphite composite with enhanced properties for steel making furnaces[J]. Ceramics International, 2016, 42(14): 15826-15835.

    [3] SONG J B, ZHANG H J, WANG J K, et al. High-yield production of large aspect ratio carbon nanotubes via catalytic pyrolysis of cheap coal tar pitch[J]. Carbon, 2018, 130: 701-713.

    [4] ZHU T B, LI Y W, SANG S B, et al. Fracture behavior of low carbon MgO-C refractories using the wedge splitting test[J]. Journal of the European Ceramic Society, 2017, 37(4): 1789-1797.

    [5] ZHU T B, LI Y W, SANG S B, et al. A new approach to fabricate MgO-C refractories with high thermal shock resistance by adding artificial graphite[J]. Journal of the European Ceramic Society, 2018, 38(4): 2179-2185.

    [6] ZHU T B, LI Y W, JIN S L, et al. Microstructure and mechanical properties of MgO-C refractories containing expanded graphite[J]. Ceramics International, 2013, 39(4): 4529-4537.

    [7] ZHU T B, LI Y W, SANG S B, et al. Effect of nanocarbon sources on microstructure and mechanical properties of MgO-C refractories[J]. Ceramics International, 2014, 40(3): 4333-4340.

    [8] ZHU T B, LI Y W, LUO M, et al. Microstructure and mechanical properties of MgO-C refractories containing graphite oxide nanosheets (GONs)[J]. Ceramics International, 2013, 39(3): 3017-3025.

    [9] LIU B, SUN J L, TANG G S, et al. Effects of nanometer carbon black on performance of low-carbon MgO-C composites[J]. Journal of Iron and Steel Research, International, 2010, 17(10): 75-78.

    [10] BEHERA S, SARKAR R. Effect of different metal powder anti-oxidants on N220 nano carbon containing low carbon MgO-C refractory: an in-depth investigation[J]. Ceramics International, 2016, 42(16): 18484-18494.

    [11] BAG M, ADAK S, SARKAR R. Study on low carbon containing MgO-C refractory: use of nano carbon[J]. Ceramics International, 2012, 38(3): 2339-2346.

    [12] BAG M, ADAK S, SARKAR R. Nano carbon containing MgO-C refractory: effect of graphite content[J]. Ceramics International, 2012, 38(6): 4909-4914.

    [13] MAHATO S, PRATIHAR S K, BEHERA S K. Fabrication and properties of MgO-C refractories improved with expanded graphite[J]. Ceramics International, 2014, 40(10): 16535-16542.

    [15] MA S H, SHI K, XIA Y, et al. Effect of modified MgO aggregates on mechanical properties of magnesium aluminate spinel refractories[J]. Ironmaking & Steelmaking, 2021, 48(3): 292-298.

    [16] HAN X Y, SHI K, MA S H, et al. Mechanical properties and microstructure evolution of MgO-Al-C slide plate refractories in presence of Al powder-modified magnesia aggregates[J]. Ceramics International, 2022, 48(4): 4576-4583.

    [17] GU Q, MA T, ZHAO F, et al. Enhancement of the thermal shock resistance of MgO-C slide plate materials with the addition of nano-ZrO2 modified magnesia aggregates[J]. Journal of Alloys and Compounds, 2020, 847: 156339.

    [18] GU Q, LIU G Q, LI H X, et al. Synthesis of MgO-MgAl2O4 refractory aggregates for application in MgO-C slide plate[J]. Ceramics International, 2019, 45(18): 24768-24776.

    [19] CHEN Q L, LI Y W, ZHU T B, et al. Improved thermal shock resistance of MgO-C refractories with addition of calcium magnesium aluminate (CMA) aggregates[J]. Ceramics International, 2022, 48(2): 2500-2509.

    [20] TALABI S I, LUZ A P, LUCAS A A, et al. Catalytic graphitization of novolac resin for refractory applications[J]. Ceramics International, 2018, 44(4): 3816-3824.

    [21] WEI G P, ZHU B Q, LI X C, et al. Microstructure and mechanical properties of low-carbon MgO-C refractories bonded by an Fe nanosheet-modified phenol resin[J]. Ceramics International, 2015, 41(1): 1553-1566.

    [24] LIU Z Y, YU J K, YUE S J, et al. Effect of carbon content on the oxidation resistance and kinetics of MgO-C refractory with the addition of Al powder[J]. Ceramics International, 2020, 46(3): 3091-3098.

    [25] CHEN Y, DENG C J, WANG X, et al. Evolution of c-ZrN nanopowders in low-carbon MgO-C refractories and their properties[J]. Journal of the European Ceramic Society, 2021, 41(1): 963-977.

    [27] LIU H T, MENG F R, LI Q, et al. Phase behavior analysis of MgO-C refractory at high temperature: influence of Si powder additives[J]. Ceramics International, 2015, 41(3): 5186-5190.

    [29] CHEN M, XU L, HUANG W J, et al. Properties of MgO-Fe-C refractories as linings of vanadium-extraction converter[J]. Journal of the European Ceramic Society, 2014, 34(15): 4011-4019.

    [30] GAO S, XU L, CHEN M, et al. Effect of Fe addition on the microstructure and oxidation behavior of MgO-C refractory[J]. Materials Chemistry and Physics, 2019, 238: 121935.

    [31] CHEN M, GAO S, XU L, et al. High temperature mechanical and corrosion resistance of Fe-containing MgO-C refractory in oxidizing atmosphere[J]. Ceramics International, 2019, 45(16): 21023-21028.

    [32] LUZ A P, SOUZA T M, PAGLIOSA C, et al. In situ hot elastic modulus evolution of MgO-C refractories containing Al, Si or Al-Mg antioxidants[J]. Ceramics International, 2016, 42(8): 9836-9843.

    [35] XIAO J L, CHEN J F, WEI Y W, et al. Oxidation behaviors of MgO-C refractories with different Si/SiC ratio in the 1 100~1 500 ℃ range[J]. Ceramics International, 2019, 45(17): 21099-21107.

    [36] ZHANG Y, CHEN J F, LI N, et al. The microstructure evolution and mechanical properties of MgO-C refractories with recycling Si/SiC solid waste from photovoltaic industry[J]. Ceramics International, 2018, 44(14): 16435-16442.

    [37] DING D H, CHONG X C, XIAO G Q, et al. Combustion synthesis of B4C/Al2O3/C composite powders and their effects on properties of low carbon MgO-C refractories[J]. Ceramics International, 2019, 45(13): 16433-16441.

    [39] YANG Y, YU J, ZHAO H Z, et al. Cr7C3: a potential antioxidant for low carbon MgO-C refractories[J]. Ceramics International, 2020, 46(12): 19743-19751.

    [40] YU C, DENG C J, ZHU H X, et al. Synthesis of hexagonal plate-like Al4Si2C5 and the effect of Al4Si2C5 addition to Al2O3-C refractory[J]. Advanced Powder Technology, 2017, 28(1): 177-184.

    [41] YU C, DING J, DENG C J, et al. The effects of sintering temperature on the morphology and physical properties of in situ Si3N4 bonded MgO-C refractory[J]. Ceramics International, 2018, 44(1): 1104-1109.

    [42] LIAO N, LI Y W, JIN S L, et al. Enhanced mechanical performance of Al2O3-C refractories with nano carbon black and in situ formed multi-walled carbon nanotubes (MWCNTs)[J]. Journal of the European Ceramic Society, 2016, 36(3): 867-874.

    [43] ZHU T B, LI Y W, SANG S B. Heightening mechanical properties and thermal shock resistance of low-carbon magnesia-graphite refractories through the catalytic formation of nanocarbons and ceramic bonding phases[J]. Journal of Alloys and Compounds, 2019, 783: 990-1000.

    [44] ZHU T B, LI Y W, JIN S L, et al. Catalytic formation of one-dimensional nanocarbon and MgO whiskers in low carbon MgO-C refractories[J]. Ceramics International, 2015, 41(3): 3541-3548.

    [45] ZHU T B, LI Y W, SANG S B, et al. Formation of nanocarbon structures in MgO-C refractories matrix: influence of Al and Si additives[J]. Ceramics International, 2016, 42(16): 18833-18843.

    [46] CHEN Y, WANG X, DENG C J, et al. Growth mechanism of in situ MgSiN2 and its synergistic effect on the properties of MgO-C refractories[J]. Construction and Building Materials, 2021, 289: 123032.

    [47] CHEN Y, DENG C J, WANG X, et al. Effect of Si powder-supported catalyst on the microstructure and properties of Si3N4-MgO-C refractories[J]. Construction and Building Materials, 2020, 240: 117964.

    [48] WANG X, CHEN Y, DING J, et al. Influence of ceramic phase content and its morphology on mechanical properties of MgO-C refractories under high temperature nitriding[J]. Ceramics International, 2021, 47(8): 10603-10610.

    [50] CHEN J F, LI N, HUBLKOV J, et al. Elucidating the role of Ti3AlC2 in low carbon MgO-C refractories: antioxidant or alternative carbon source?[J]. Journal of the European Ceramic Society, 2018, 38(9): 3387-3394.

    [51] CHEN J F, LI N, YAN W. Influence of Ti3AlC2 on corrosion resistance and microstructure of Al2O3-Ti3AlC2-C refractories in contact with ladle slag[J]. Journal of the European Ceramic Society, 2016, 36(6): 1505-1511.

    CHEN Yang, DENG Chengji, LOU Xiaoming, DING Jun, YU Chao. Research Progress on Structure and Property Optimization of Low-Carbon MgO-C Refractories[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(6): 2153
    Download Citation