• Acta Photonica Sinica
  • Vol. 51, Issue 1, 0151102 (2022)
Qian CAO and Qiwen ZHAN*
Author Affiliations
  • School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China
  • show less
    DOI: 10.3788/gzxb20225101.0151102 Cite this Article
    Qian CAO, Qiwen ZHAN. Spatiotemporal Sculpturing of Light and Recent Development in Spatiotemporal Optical Vortices Wavepackets(Invited)[J]. Acta Photonica Sinica, 2022, 51(1): 0151102 Copy Citation Text show less
    References

    [1] F X KAERTNER. Ultrafast optics(2005).

    [2] A WEINER. Ultrafast optics(2011).

    [3] F X KAERTNER. Few-cycle laser pulse generation and its applications. Springer Science & Business Media(2004).

    [4] P B CORKUM, F KRAUSZ. Attosecond science. Nature Physics, 3, 381-387(2007).

    [5] Wei MIN, C W FREUDIGER, Sijia LU et al. Coherent nonlinear optical imaging: beyond fluorescence microscopy. Annual Review of Physical Chemistry, 62, 507-530(2011).

    [6] Libai HUANG, Jixin CHENG. Nonlinear optical microscopy of single nanostructures. Annual Review of Materials Research, 43, 213-236(2013).

    [7] T UDEM, R HOLZWARTH, T W HÄNSCH. Optical frequency metrology. Nature, 416, 233-237(2002).

    [8] M C STOWE, M J THORPE, A PE'ER et al. Direct frequency comb spectroscopy. Advances in Atomic, Molecular, and Optical Physics, 55, 1-60(2008).

    [9] A CHONG, Chenhao WAN, Jian CHEN et al. Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum. Nature Photonics, 14, 350-354(2020).

    [10] S W HANCOCK, S ZAHEDPOUR, A GOFFIN et al. Free-space propagation of spatiotemporal optical vortices. Optica, 6, 1547-1553(2019).

    [11] Chenhao WAN, Jian CHEN, A CHONG et al. Generation of ultrafast spatiotemporal wave packet embedded with time-varying orbital angular momentum. Science Bulletin, 65, 1334-1336(2020).

    [12] Guan GUI, N J BROOKS, H C KAPTEYN et al. Second-harmonic generation and the conservation of spatiotemporal orbital angular momentum of light. Nature Photonics, 15, 608-613(2020).

    [13] S W HANCOCK, S ZAHEDPOUR, H M MILCHBERG. Second-harmonic generation of spatiotemporal optical vortices and conservation of orbital angular momentum. Optica, 8, 594-597(2021).

    [14] Shunlin HUANG, Peng WANG, Xiong SHEN et al. Properties of the generation and propagation of spatiotemporal optical vortices. Optics Express, 29, 26995-27003(2021).

    [15] K Y BLIOKH. Spatiotemporal vortex pulses: angular momenta and spin-orbit interaction. Physical Review Letters, 126, 243601(2021).

    [16] Chenhao WAN, Jian CHEN, A CHONG et al. Photonic orbital angular momentum with controllable orientation. National Science Review, nwab149(2021).

    [17] Qian CAO, Jian CHEN, Keyin LU et al. Non-spreading Bessel spatiotemporal optical vortices. Science Bulletin(2021).

    [18] Qian CAO, Jian CHEN, Keyin LU et al. Sculpturing spatiotemporal wavepackets with chirped pulses. Photonics Research, 9, 2261-2264(2021).

    [19] Jian CHEN, Chen WAN, A CHONG et al. Experimental demonstration of cylindrical vector spatiotemporal optical vortex. Nanophotonics, arXiv, 2101.09452(2021).

    [20] A SAINTE-MARIE, O GOBERT, F QUERE. Controlling the velocity of ultrashort light pulses in vacuum through spatio-temporal couplings. Optica, 4, 1298-1304(2017).

    [21] H E KONDAKCI, A F ABOURADDY. Optical space-time wave packets having arbitrary group velocities in free space. Nature Communications, 10, 1-8(2019).

    [22] B BHADURI, M YESSENOV, A F ABOURADDY. Space–time wave packets that travel in optical materials at the speed of light in vacuum. Optica, 6, 139-146(2019).

    [23] M YESSENOV, B BHADURI, P J DELFYETT et al. Free-space optical delay line using space-time wave packets. Nature Communications, 11, 1-10(2020).

    [24] M YESSENOV, A F ABOURADDY. Accelerating and decelerating space-time optical wave packets in free space. Physical Review Letters, 125, 233901(2020).

    [25] L A HALL, A F ABOURADDY. Free-space group-velocity dispersion induced in space-time wave packets by V-shaped spectra. Physical Review A, 104, 013505(2021).

    [26] B BHADURI, M YESSENOV, A F ABOURADDY. Anomalous refraction of optical spacetime wave packets. Nature Photonics, 14, 416-421(2020).

    [27] H E KONDAKCI, A F ABOURADDY. Airy wave packets accelerating in space-time. Physical Review Letters, 120, 163901(2018).

    [28] O V BOROVKOVA, Y V KARTASHOV, V E LOBANOV et al. General quasi-nonspreading linear three-dimensional wave packets. Optics Letters, 36, 2176-2178(2011).

    [29] M S MILLS, G A SIVILOGLOU, N EFREMIDIS et al. Localized waves with spherical harmonic symmetries. Physical Review A, 86, 063811(2012).

    [30] H E KONDAKCI, A F ABOURADDY. Diffraction-free pulsed optical beams via space-time correlations. Optics Express, 24, 28659-28668(2016).

    [31] H E KONDAKCI, A F ABOURADDY. Diffraction-free space–time light sheets. Nature Photonics, 11, 733-740(2017).

    [32] H E KONDAKCI, M YESSENOV, M MEEM et al. Synthesizing broadband propagation-invariant space-time wave packets using transmissive phase plates. Optics Express, 26, 13628-13638(2018).

    [33] M YESSENOV, B BHADURI, H E KONDAKCI et al. Classification of propagation-invariant space-time wave packets in free space: theory and experiments. Physical Review A, 99, 023856(2019).

    [34] N K EFREMIDIS. Spatiotemporal diffraction-free pulsed beams in free-space of the Airy and Bessel type. Optics Letters, 42, 5038-5041(2017).

    [35] B BHADURI, M YESSENOV, D REYES et al. Broadband space-time wave packets propagating 70 m. Optics Letters, 44, 2073-2076(2019).

    [36] M YESSENOV, Qitian RU, K L SCHEPLER et al. Mid-infrared diffraction-free space-time wave packets. OSA Continuum, 3, 420-429(2020).

    [37] K L SCHEPLER, M YESSENOV, Y ZHIYENBAYEV et al. Space-time surface plasmon polaritons: A new propagation-invariant surface wave packet. ACS Photonics, 7, 2966-2977(2020).

    [38] E HECHT. Optics. Pearson(2002).

    [39] E TREACY. Optical pulse compression with diffraction gratings. IEEE Journal of Quantum Electronics, 5, 454-458(1969).

    [40] O E MARTINEZ. Grating and prism compressors in the case of finite beam size. Journal of the Optical Society of America B, 3, 929-934(1986).

    [41] D STRICKLAND, G MOUROU. Compression of amplified chirped optical pulses. Optics Communications, 55, 447-449(1985).

    [42] S AKTURK, Xun GU, M KIMMEL et al. Extremely simple single-prism ultrashort-pulse compressor. Optics Express, 14, 10101-10108(2006).

    [43] U KELLER. Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight. Applied Physics B, 100, 15-28(2010).

    [44] M E FERMANN, I HARTL. Ultrafast fiber laser technology. IEEE Journal of Selected Topics in Quantum Electronics, 15, 191-206(2009).

    [45] P MAINE, D STRICKLAND, P BADO et al. Generation of ultrahigh peak power pulses by chirped pulse amplification. IEEE Journal of Quantum Electronics, 24, 398-403(1988).

    [46] Zongxin ZHANG, Fenxiang WU, Jiabing HU et al. The laser beamline in SULF facility. High Power Laser Science and Engineering, 8, e4(2020).

    [47] Z BOR. Distortion of femtosecond laser pulses in lenses and lens systems. Journal of Modern Optics, 35, 1907-1918(1988).

    [48] Z BOR. Distortion of femtosecond laser pulses in lenses. Optics Letters, 14, 119-121(1989).

    [49] Z BOR, Z L Horvath. Distortion of femtosecond pulses in lenses. Wave optical description. Optics Communications, 94, 249-258(1992).

    [50] M KEMPE, U STAMM, B WILHELMI et al. Spatial and temporal transformation of femtosecond laser pulses by lenses and lens systems. Journal of the Optical Society of America B, 9, 1158-1165(1992).

    [51] Z L HORVATH, Z BOR. Focusing of femtosecond pulses having Gaussian spatial distribution. Optics Communications, 100, 6-12(1993).

    [52] M KEMPE, W RUDOLPH. Impact of chromatic and spherical aberration on the focusing of ultrashort light pulses by lenses. Optics Letters, 18, 137-139(1993).

    [53] R W ZIOLKOWSKI, J B JUDKINS. Propagation characteristics of ultrawide-bandwidth pulsed Gaussian beams. Journal of the Optical Society of America A, 9, 2021-2030(1992).

    [54] B J SUSSMAN, R LAUSTEN, A STOLOW. Focusing of light following a 4-f pulse shaper: considerations for quantum control. Physical Review A, 77, 043416(2008).

    [55] A V SMITH. Group-velocity-matched three-wave mixing in birefringent crystals. Optics Letters, 26, 719-721(2001).

    [56] O E MARTINEZ. Achromatic phase matching for second harmonic generation of femtosecond pulses. IEEE Journal of Quantum Electronics, 25, 2464-2468(1989).

    [57] B A RICHMAN, S E BISSON, R TREBINO et al. Achromatic phase matching for tunable second-harmonic generation by use of a grism. Optics Letters, 22, 1223-1225(1997).

    [58] G SZABO, Z BOR. Broadband frequency doubler for femtosecond pulses. Applied Physics B, 50, 51-54(1990).

    [59] G ARISHOLM, J BIEGERT, P SCHLUP et al. Ultra-broadband chirped-pulse optical parametric amplifier with angularly dispersed beams. Optics Express, 12, 518-530(2004).

    [60] I Z KOZMA, G ALMÁSI, J HEBLING. Geometrical optical modeling of femtosecond setups having angular dispersion. Applied Physics B, 76, 257-261(2003).

    [61] K L YEH, M C HOFFMANN, J HEBLING et al. Generation of 10 μ J ultrashort terahertz pulses by optical rectification. Applied Physics Letters, 90, 171121(2007).

    [62] J HEBLING, G ALMASI, I Z KOZMA et al. Velocity matching by pulse front tilting for large-area THz-pulse generation. Optics Express, 10, 1161-1166(2002).

    [63] J A FÜLÖP, L PÁLFALVI, G ALMÁSI et al. High energy THz pulse generation by tilted pulse front excitation and its nonlinear optical applications. Journal of Infrared, Millimeter, and Terahertz Waves, 32, 553-561(2011).

    [64] L PÁLFALVI, G TÓTH, L TOKODI et al. Numerical investigation of a scalable setup for efficient terahertz generation using a segmented tilted-pulse-front excitation. Optics Express, 25, 29560-29573(2017).

    [65] D ORON, E TAL, Y SILBERBERG. Scanningless depth-resolved microscopy. Optics Express, 13, 1468-1476(2005).

    [66] E TAL, D ORON, Y SILBERBERG. Improved depth resolution in video-rate line-scanning multiphoton microscopy using temporal focusing. Optics Letters, 30, 1686-1688(2005).

    [67] D ORON, Y SILBERBERG. Spatiotemporal coherent control using shaped, temporally focused pulses. Optics Express, 13, 9903-9908(2005).

    [68] M E DURST, Guanghao ZHU, C XU. Simultaneous spatial and temporal focusing in nonlinear microscopy. Optics Communications, 281, 1796-1805(2008).

    [69] E PAPAGIAKOUMOU, E RONZITTI, V EMILIANI. Scanless two-photon excitation with temporal focusing. Nature Methods, 17, 571-581(2020).

    [70] P SOMERS, Zihao LIANG, J E JOHNSON et al. Rapid, continuous projection multi-photon 3D printing enabled by spatiotemporal focusing of femtosecond pulses. Light: Science & Applications, 10, 1-11(2021).

    [71] S AKTURK, Xun GU, P BOWLAN et al. Spatio-temporal couplings in ultrashort laser pulses. Journal of Optics, 12, 093001(2010).

    [72] C G DURFEE, J A SQUIER. Breakthroughs in photonics 2014: spatiotemporal focusing: advances and applications. IEEE Photonics Journal, 7, 1-6(2015).

    [73] C DORRER. Spatiotemporal metrology of broadband optical pulses. IEEE Journal of Selected Topics in Quantum Electronics, 25, 1-16(2019).

    [74] S W JOLLY, O GOBERT, F QUÉRÉ. Spatio-temporal characterization of ultrashort laser beams: a tutorial. Journal of Optics, 22, 103501(2020).

    [75] A CHONG, W H RENNINGER, D N CHRISTODOULIDES et al. Airy–Bessel wave packets as versatile linear light bullets. Nature Photonics, 4, 103-106(2010).

    [76] D ABDOLLAHPOUR, S SUNTSOV, D G PAPAZOGLOU et al. Spatiotemporal Airy light bullets in the linear and nonlinear regimes. Physical Review Letters, 105, 253901(2010).

    [77] Xin HUANG, Qian CAO, Han LI et al. Generation of versatile vortex linear light bullet, JTu5A-11(2015).

    [78] A M WEINER, J P HERITAGE, E M KIRSCHNER. High-resolution femtosecond pulse shaping. Journal of the Optical Society of America B, 5, 1563-1572(1988).

    [79] J P HERITAGE, A M WEINER, R N THURSTON. Picosecond pulse shaping by spectral phase and amplitude manipulation. Optics Letters, 10, 609-611(1985).

    [80] A M WEINER. Femtosecond pulse shaping using spatial light modulators. Review of Scientific Instruments, 71, 1929-1960(2000).

    [81] M DALLAIRE, N MCCARTHY, M PICHÉ. Spatiotemporal Bessel beams: theory and experiments. Optics Express, 17, 18148-18164(2009).

    [82] J W GOODMAN. Introduction to Fourier optics (third edition)(1968).

    [83] J V CORNACCHIO, R P SONI. On a relation between two-dimensional Fourier integrals and series of Hankel transforms. Journal of Research of the National Bureau of Standards-B. Mathematics and Mathematical Physics B, 69, 173-174(1964).

    [84] J DURNIN, J J MICELI Jr, J H EBERLY. Diffraction-free beams. Physical Review Letters, 58, 1499(1987).

    [85] A M YAO, M J PADGETT. Orbital angular momentum: origins, behavior and applications. Advances in Optics and Photonics, 3, 161-204(2011).

    [86] A AIELLO, P BANZER, M NEUGEBAUER et al. From transverse angular momentum to photonic wheels. Nature Photonics, 9, 789-795(2015).

    [87] B RICHARDS, E WOLF. Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 253, 358-379(1959).

    [88] K Y BLIOKH, F NORI. Transverse spin of a surface polariton. Physical Review A, 85, 061801(2012).

    [89] A P SUKHORUKOV, V V YANGIROVA. Spatio-temporal vortices: properties, generation and recording, 5949, 594906(2005).

    [90] K Y BLIOKH, F NORI. Spatiotemporal vortex beams and angular momentum. Physical Review A, 86, 033824(2012).

    [91] N JHAJJ, I LARKIN, E W ROSENTHAL et al. Spatiotemporal optical vortices. Physical Review X, 6, 031037(2016).

    [92] M MAZILU, D J STEVENSON, F GUNN‐MOORE et al. Light beats the spread:“non‐diffracting” beams. Laser & Photonics Reviews, 4, 529-547(2010).

    [93] O V BOROVKOVA, Y V KARTASHOV, V E LOBANOV et al. General quasi-nonspreading linear three-dimensional wave packets. Optics Letters, 36, 2176-2178(2011).

    [94] M S MILLS, G A SIVILOGLOU, N EFREMIDIS et al. Localized waves with spherical harmonic symmetries. Physical Review A, 86, 063811(2012).

    [95] Jian CHEN, Lihua YU, Chenhao WAN et al. Spin-orbit coupling within tightly focused circularly polarized spatiotemporal vortex wavepacket, arXiv preprint arXiv, 2103.09467(2021).

    [96] Chenhao WAN, Qian CAO, Jian CHEN et al. Photonic toroidal vortex, arXiv preprint arXiv, 2109.02833(2021).

    Qian CAO, Qiwen ZHAN. Spatiotemporal Sculpturing of Light and Recent Development in Spatiotemporal Optical Vortices Wavepackets(Invited)[J]. Acta Photonica Sinica, 2022, 51(1): 0151102
    Download Citation