• Chinese Journal of Lasers
  • Vol. 52, Issue 1, 0104002 (2025)
Bin Guo1,2, Suodong Ma1,2,*, Junxue Wang1,2, Linxin Liu1,2..., Gaonan Miao1,2 and Chinhua Wang1,2|Show fewer author(s)
Author Affiliations
  • 1School of Optoelectronic Science and Engineering, Soochow University, Suzhou 215006, Jiangsu , China
  • 2Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Suzhou 215006, Jiangsu , China
  • show less
    DOI: 10.3788/CJL241001 Cite this Article Set citation alerts
    Bin Guo, Suodong Ma, Junxue Wang, Linxin Liu, Gaonan Miao, Chinhua Wang. Dual‐Frequency Virtual‐Stepping Fringe‐Projection Profilometry Driven by Neural Network[J]. Chinese Journal of Lasers, 2025, 52(1): 0104002 Copy Citation Text show less
    References

    [1] Yu J J, Zhou J P, Xue R L et al. Weld surface quality detection based on structured light and illumination model[J]. Chinese Journal of Lasers, 49, 1602019(2022).

    [2] Li Y, Zhang G H, Ma L H et al. Review of dynamic three-dimensional surface imaging based on fringe projection[J]. Infrared and Laser Engineering, 49, 0303005(2020).

    [3] Fujigaki M. Real-time and wide-range 3D shape measurement using linear LED fringe projector[C], 15-17(2015).

    [4] Fujigaki M, Oura Y, Asai D et al. High-speed height measurement by a light-source-stepping method using a linear LED array[J]. Optics Express, 21, 23169-23180(2013).

    [5] Wang J, Sankaranarayanan A C, Gupta M et al. Dual structured light 3D using a 1D sensor[M]. Computer vision-ECCV 2016, 9910, 383-398(2016).

    [6] Sakaguchi T, Fujigaki M, Murata Y. Evaluation of expansion algorithm of measurement range suited for 3D shape measurement using two pitches of projected grating with light source-stepping method[J]. Proceedings of SPIE, 9302, 930228(2015).

    [7] Zuo C, Huang L, Zhang M L et al. Temporal phase unwrapping algorithms for fringe projection profilometry: a comparative review[J]. Optics and Lasers in Engineering, 85, 84-103(2016).

    [8] Ying X L, Yao J Y, Zhang X S et al. Fringe projection based three-dimensional measurement system by the light-source-stepping method using LD[J]. Opto-Electronic Engineering, 48, 210298(2021).

    [9] Wang Z Y, Han B. Advanced iterative algorithm for phase extraction of randomly phase-shifted interferograms[J]. Optics Letters, 29, 1671-1673(2004).

    [10] Liu C, Gai S Y, Da F P. Sub-regional phase error compensation for structural light measurement[J]. Chinese Journal of Lasers, 45, 0604002(2018).

    [11] Mao C L, Lu R S. Inverse error compensation method for improvement of phase recovery accuracy of multi-frequency fringe projection[J]. Acta Optica Sinica, 38, 0412005(2018).

    [12] Xu J C, Xu Q, Chai L Q. An iterative algorithm for interferograms with random phase shifts and high-order harmonics[J]. Journal of Optics A: Pure and Applied Optics, 10, 095004(2008).

    [13] Xu J C, Xu Q, Chai L Q. Iterative algorithm for phase extraction from interferograms with random and spatially nonuniform phase shifts[J]. Applied Optics, 47, 480-485(2008).

    [14] Chen Y C, Kemao Q. Advanced iterative algorithm for phase extraction: performance evaluation and enhancement[J]. Optics Express, 27, 37634-37651(2019).

    [15] Zhao S, Li Y, Wu Z et al. Robust decorrelation-based iterative algorithm for accurate phase extraction from disturbed fringe patterns[J]. Optics Letters, 48, 3315-3318(2023).

    [16] Chen Y C, Kemao Q. General iterative algorithm for phase-extraction from fringe patterns with random phase-shifts, intensity harmonics and non-uniform phase-shift distribution[J]. Optics Express, 29, 30905-30926(2021).

    [17] de Groot P J. Vibration in phase-shifting interferometry[J]. Journal of the Optical Society of America A, 12, 354-365(1995).

    [18] Tao S W, Xu Y S, Bai L et al. Moiré artifacts reduction in Talbot-Lau X-ray phase contrast imaging using a three-step iterative approach[J]. Optics Express, 30, 35096-35111(2022).

    [19] Wang J X, Ma S D, Wang C et al. General phase-shifting algorithm for hybrid errors suppression using variable-frequency fringes[J]. Optics Express, 31, 41595-41610(2023).

    [20] Zuo C, Qian J M, Feng S J et al. Deep learning in optical metrology: a review[J]. Light: Science & Applications, 11, 39(2022).

    [21] Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[M]. Medical image computing and computer-assisted intervention-MICCAI 2015, 9351, 234-241(2015).

    [22] Li Y Y, Shen J F, Wu Z J et al. Passive binary defocusing for large depth 3D measurement based on deep learning[J]. Applied Optics, 60, 7243-7253(2021).

    [23] Nguyen H, Wang Z Y. Accurate 3D shape reconstruction from single structured-light image via fringe-to-fringe network[J]. Photonics, 8, 459(2021).

    [24] Liu J, Tan J, Wang X et al. Deep learning-driven large depth range three-dimensional measurement using binary focusing projection[J]. Laser & Optoelectronics Progress, 61, 1011002(2024).

    [25] Wang K Q, Li Y, Qian K M et al. One-step robust deep learning phase unwrapping[J]. Optics Express, 27, 15100-15115(2019).

    [26] Wang J Y, Li Y X, Zhang Y Z. A learning based on approach for noise reduction with raster images[J]. Infrared and Laser Engineering, 51, 20220006(2022).

    [27] Zhang Z C, Zhang Z H, Gao N et al. U-Net-based structured light three-dimensional measurement technology[J]. Laser & Optoelectronics Progress, 58, 2010003(2021).

    [28] Yuan M K, Zhu X J, Hou L P. Depth estimation from single-frame fringe projection patterns based on R2U-Net[J]. Laser & Optoelectronics Progress, 59, 1610001(2022).

    [29] Yang L T, Liu X L, Chu X X et al. Structured light three-dimensional reconstruction technology based on MultiResHNet[J]. Laser & Optoelectronics Progress, 60, 2015006(2023).

    [30] Ibtehaz N, Rahman M S. MultiResUNet: Rethinking the U-Net architecture for multimodal biomedical image segmentation[J]. Neural Networks, 121, 74-87(2020).

    [31] Nguyen H, Ly K L, Tran T et al. hNet: single-shot 3D shape reconstruction using structured light and h-shaped global guidance network[J]. Results in Optics, 4, 100104(2021).

    [32] Srinivasan V, Liu H C, Halioua M. Automated phase-measuring profilometry of 3-D diffuse objects[J]. Applied Optics, 23, 3105-3108(1984).

    [33] Jiang C, Xing S, Guo H W. Fringe harmonics elimination in multi-frequency phase-shifting fringe projection profilometry[J]. Optics Express, 28, 2838-2856(2020).

    [34] Yin Y K, Zhang Z H, Liu X L et al. Review of the system model and calibration for fringe projection profilometry[J]. Infrared and Laser Engineering, 49, 0303008(2020).

    [35] Wang X Z. Research on three-dimensional measurement system based on fringe projection technology with LED arrays[D](2020).

    [36] Quan C, Tay C J, Chen L J. A study on carrier-removal techniques in fringe projection profilometry[J]. Optics & Laser Technology, 39, 1155-1161(2007).

    Bin Guo, Suodong Ma, Junxue Wang, Linxin Liu, Gaonan Miao, Chinhua Wang. Dual‐Frequency Virtual‐Stepping Fringe‐Projection Profilometry Driven by Neural Network[J]. Chinese Journal of Lasers, 2025, 52(1): 0104002
    Download Citation