• Photonics Research
  • Vol. 7, Issue 5, A7 (2019)
Seok Hyung Lie and Hyunseok Jeong*
Author Affiliations
  • Center for Macroscopic Quantum Control, Department of Physics and Astronomy, Seoul National University, Seoul 151-742, South Korea
  • show less
    DOI: 10.1364/PRJ.7.0000A7 Cite this Article Set citation alerts
    Seok Hyung Lie, Hyunseok Jeong. Limitations of teleporting a qubit via a two-mode squeezed state[J]. Photonics Research, 2019, 7(5): A7 Copy Citation Text show less
    References

    [1] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett., 70, 1895-1899(1993).

    [2] E. Knill, R. Laflamme, G. J. Milburn. A scheme for efficient quantum computation with linear optics. Nature, 409, 46-52(2001).

    [3] D. Gottesman, I. L. Chuang. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature, 402, 390-393(1999).

    [4] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger. Experimental quantum teleportation. Nature, 390, 575-579(1997).

    [5] N. Lütkenhaus, J. Calsamiglia, K.-A. Suominen. Bell measurements for teleportation. Phys. Rev. A, 59, 3295-3300(1999).

    [6] T. C. Ralph, G. J. Pryde. Optical quantum computation. Progress in Optics, 54, 209-269(2010).

    [7] Y. Li, P. C. Humphreys, G. J. Mendoza, S. C. Benjamin. Resource costs for fault-tolerant linear optical quantum computing. Phys. Rev. X, 5, 041007(2015).

    [8] W. P. Grice. Arbitrarily complete Bell-state measurement using only linear optical elements. Phys. Rev. A, 84, 042331(2011).

    [9] F. Ewert, P. van Loock. 3/4-efficient bell measurement with passive linear optics and unentangled ancillae. Phys. Rev. Lett., 113, 140403(2014).

    [10] S.-W. Lee, K. Park, T. C. Ralph, H. Jeong. Nearly deterministic Bell measurement for multiphoton qubits and its application to quantum information processing. Phys. Rev. Lett., 114, 113603(2015).

    [11] H. A. Zaidi, P. van Loock. Beating the one-half limit of ancilla-free linear optics Bell measurements. Phys. Rev. Lett., 110, 260501(2013).

    [12] S. L. Braunstein, H. J. Kimble. Teleportation of continuous quantum variables. Phys. Rev. Lett., 80, 869-872(1998).

    [13] L. Vaidman. Teleportation of quantum states. Phys. Rev. A, 49, 1473-1476(1994).

    [14] S. Lloyd, S. Braunstein. Quantum computation over continuous variables. Phys. Rev. Lett., 82, 1784-1787(1999).

    [15] N. C. Menicucci, P. van Loock, M. Gu, C. Weedbrook, T. C. Ralph, M. A. Nielsen. Universal quantum computation with continuous-variable cluster states. Phys. Rev. Lett., 97, 110501(2006).

    [16] A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, E. S. Polzik. Unconditional quantum teleportation. Science, 282, 706-709(1998).

    [17] R. Polkinghorne, T. Ralph. Continuous variable entanglement swapping. Phys. Rev. Lett., 83, 2095-2099(1999).

    [18] T. Ralph. Interferometric tests of teleportation. Phys. Rev. A, 65, 012319(2001).

    [19] S. Takeda, T. Mizuta, M. Fuwa, P. van Loock, A. Furusawa. Deterministic quantum teleportation of photonic quantum bits by a hybrid technique. Nature, 500, 315-318(2013).

    [20] N. C. Menicucci. Fault-tolerant measurement-based quantum computing with continuous-variable cluster states. Phys. Rev. Lett., 112, 120504(2014).

    [21] H. Jeong, J. Lee, M. S. Kim. Dynamics of nonlocality for a two-mode squeezed state in a thermal environment. Phys. Rev. A, 61, 052101(2000).

    [22] C.-W. Lee, H. Jeong. Quantification of macroscopic quantum superpositions within phase space. Phys. Rev. Lett., 106, 220401(2011).

    [23] S. Takeda, T. Mizuta, M. Fuwa, H. Yonezawa, P. van Loock, A. Furusawa. Gain tuning for continuous-variable quantum teleportation of discrete-variable states. Phys. Rev. A, 88, 042327(2013).

    [24] H. F. Hofmann, T. Ide, T. Kobayashi, A. Furusawa. Fidelity and information in the quantum teleportation of continuous variables. Phys. Rev. A, 62, 062304(2000).

    [25] A. Einstein, B. Podolsky, N. Rosen. Can quantum-mechanical description of physical reality be considered complete?. Phys. Rev., 47, 777-780(1935).

    [26] T. Ide, H. F. Hofmann, A. Furusawa, T. Kobayashi. Gain tuning and fidelity in continuous-variable quantum teleportation. Phys. Rev. A, 65, 062303(2002).

    [27] K. Życzkowski, P. Horodecki, A. Sanpera, M. Lewenstein. Volume of the set of separable states. Phys. Rev. A, 58, 883-892(1998).

    [28] G. Adesso, A. Serafini, F. Illuminati. Extremal entanglement and mixedness in continuous variable systems. Phys. Rev. A, 70, 022318(2004).

    [29] G. Vidal, R. F. Werner. Computable measure of entanglement. Phys. Rev. A, 65, 032314(2002).

    [30] K. Audenaert, M. Plenio, J. Eisert. Entanglement cost under positive-partial-transpose-preserving operations. Phys. Rev. Lett., 90, 027901(2003).

    [31] C. M. Dawson, H. L. Haselgrove, M. A. Nielsen. Noise thresholds for optical quantum computers. Phys. Rev. Lett., 96, 020501(2006).

    [32] A. Lund, T. Ralph, H. Haselgrove. Fault-tolerant linear optical quantum computing with small-amplitude coherent states. Phys. Rev. Lett., 100, 030503(2008).

    [33] D. A. Herrera-Marti, A. G. Fowler, D. Jennings, T. Rudolph. Photonic implementation for the topological cluster-state quantum computer. Phys. Rev. A, 82, 032332(2010).

    [34] S.-W. Lee, H. Jeong. Near-deterministic quantum teleportation and resource-efficient quantum computation using linear optics and hybrid qubits. Phys. Rev. A, 87, 022326(2013).

    [35] A. Schönbeck, F. Thies, R. Schnabel. 13 dB squeezed vacuum states at 1550 nm from 12 mW external pump power at 775 nm. Opt. Lett., 43, 110-113(2018).

    CLP Journals

    [1] Xian-Min Jin, M. S. Kim, Brian J. Smith. Quantum photonics: feature introduction[J]. Photonics Research, 2019, 7(12): QP1

    Seok Hyung Lie, Hyunseok Jeong. Limitations of teleporting a qubit via a two-mode squeezed state[J]. Photonics Research, 2019, 7(5): A7
    Download Citation