[1] K. J. Vahala. Optical microcavities. Nature, 424, 839-846(2003).
[2] G. Lin, A. Coillet, Y. K. Chembo. Nonlinear photonics with high-Q whispering-gallery-mode resonators. Adv. Opt. Photon., 9, 828-890(2017).
[3] P. Del’Haye, A. Schliesser, O. Arcizet. Optical frequency comb generation from a monolithic microresonator. Nature, 450, 1214-1217(2007).
[4] T. J. Kippenberg, R. Holzwarth, S. A. Diddams. Microresonator-based optical frequency combs. Science, 332, 555-559(2011).
[5] P. Marin-Palomo, J. N. Kemal, M. Karpov. Microresonator-based solitons for massively parallel coherent optical communications. Nature, 546, 274-279(2017).
[6] M.-G. Suh, Q.-F. Yang, K. Y. Yang. Microresonator soliton dual-comb spectroscopy. Science, 354, 600-603(2016).
[7] A. Dutt, C. Joshi, X. Ji. On-chip dual-comb source for spectroscopy. Sci. Adv., 4, e1701858(2018).
[8] E. Lucas, G. Lihachev, R. Bouchand. Spatial multiplexing of soliton microcombs. Nat. Photonics, 12, 699-705(2018).
[9] Z. Wang, Y. Wang, B. Shi. Rhythmic soliton interactions for integrated dual-microcomb spectroscopy. arXiv preprint(2024).
[10] M.-G. Suh, K. J. Vahala. Soliton microcomb range measurement. Science, 359, 884-887(2018).
[11] P. Trocha, M. Karpov, D. Ganin. Ultrafast optical ranging using microresonator soliton frequency combs. Science, 359, 887-891(2018).
[12] J. Riemensberger, A. Lukashchuk, M. Karpov. Massively parallel coherent laser ranging using a soliton microcomb. Nature, 581, 164-170(2020).
[13] W. Liang, D. Eliyahu, V. S. Ilchenko. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat. Commun., 6, 7957(2015).
[14] J. Liu, E. Lucas, A. S. Raja. Photonic microwave generation in the X-and K-band using integrated soliton microcombs. Nat. Photonics, 14, 486-491(2020).
[15] S. Zhang, J. M. Silver, X. Shang. Terahertz wave generation using a soliton microcomb. Opt. Express, 27, 35257-35266(2019).
[16] B. Wang, J. S. Morgan, K. Sun. Towards high-power, high-coherence, integrated photonic mmWave platform with microcavity solitons. Light Sci. Appl., 10, 4(2021).
[17] S.-W. Huang, J. Yang, S.-H. Yang. Globally stable microresonator Turing pattern formation for coherent high-power THz radiation on-chip. Phys. Rev. X, 7, 041002(2017).
[18] X. Xu, M. Tan, B. Corcoran. Photonic perceptron based on a Kerr microcomb for high-speed, scalable, optical neural networks. Laser Photon. Rev., 14, 2000070(2020).
[19] X. Xu, M. Tan, B. Corcoran. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature, 589, 44-51(2021).
[20] J. Feldmann, N. Youngblood, M. Karpov. Parallel convolutional processing using an integrated photonic tensor core. Nature, 589, 52-58(2021).
[21] T. Herr, V. Brasch, J. D. Jost. Temporal solitons in optical microresonators. Nat. Photonics, 8, 145-152(2014).
[22] T. Herr, K. Hartinger, J. Riemensberger. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nat. Photonics, 6, 480-487(2012).
[23] T. J. Kippenberg, A. L. Gaeta, M. Lipson. Dissipative Kerr solitons in optical microresonators. Science, 361, eaan8083(2018).
[24] D. C. Cole, E. S. Lamb, P. Del’Haye. Soliton crystals in Kerr resonators. Nat. Photonics, 11, 671-676(2017).
[25] W. Wang, Z. Lu, W. Zhang. Robust soliton crystals in a thermally controlled microresonator. Opt. Lett., 43, 2002-2005(2018).
[26] M. Karpov, M. H. Pfeiffer, H. Guo. Dynamics of soliton crystals in optical microresonators. Nat. Phys., 15, 1071-1077(2019).
[27] Y. He, J. Ling, M. Li. Perfect soliton crystals on demand. Laser Photon. Rev., 14, 1900339(2020).
[28] F. Leo, L. Gelens, P. Emplit. Dynamics of one-dimensional Kerr cavity solitons. Opt. Express, 21, 9180-9191(2013).
[29] C. Godey, I. V. Balakireva, A. Coillet. Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes. Phys. Rev. A, 89, 063814(2014).
[30] C. Bao, J. A. Jaramillo-Villegas, Y. Xuan. Observation of Fermi-Pasta-Ulam recurrence induced by breather solitons in an optical microresonator. Phys. Rev. Lett., 117, 163901(2016).
[31] M. Yu, J. K. Jang, Y. Okawachi. Breather soliton dynamics in microresonators. Nat. Commun., 8, 14569(2017).
[32] E. Lucas, M. Karpov, H. Guo. Breathing dissipative solitons in optical microresonators. Nat. Commun., 8, 736(2017).
[33] C. Bao, Y. Xuan, C. Wang. Observation of breathing dark pulses in normal dispersion optical microresonators. Phys. Rev. Lett., 121, 257401(2018).
[34] S. Wan, R. Niu, Z.-Y. Wang. Frequency stabilization and tuning of breathing solitons in Si3N4 microresonators. Photon. Res., 8, 1342-1349(2020).
[35] L. A. Lugiato, R. Lefever. Spatial dissipative structures in passive optical systems. Phys. Rev. Lett., 58, 2209-2211(1987).
[36] S. Coen, H. G. Randle, T. Sylvestre. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato–Lefever model. Opt. Lett., 38, 37-39(2013).
[37] T. Hansson, S. Wabnitz. Bichromatically pumped microresonator frequency combs. Phys. Rev. A, 90, 013811(2014).
[38] H. Zhou, Y. Geng, W. Cui. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light Sci. Appl., 8, 50(2019).
[39] C. Bao, P. Liao, A. Kordts. Dual-pump generation of high-coherence primary Kerr combs with multiple sub-lines. Opt. Lett., 42, 595-598(2017).
[40] D. V. Strekalov, N. Yu. Generation of optical combs in a whispering gallery mode resonator from a bichromatic pump. Phys. Rev. A, 79, 041805(2009).
[41] Y. Okawachi, M. Yu, K. Luke. Dual-pumped degenerate Kerr oscillator in a silicon nitride microresonator. Opt. Lett., 40, 5267-5270(2015).
[42] W. Wang, S. T. Chu, B. E. Little. Dual-pump Kerr micro-cavity optical frequency comb with varying FSR spacing. Sci. Rep., 6, 28501(2016).
[43] H. Zheng, W. Sun, X. Ding. Programmable access to microresonator solitons with modulational sideband heating. APL Photon., 8, 126110(2023).
[44] W. Weng, R. Bouchand, E. Lucas. Heteronuclear soliton molecules in optical microresonators. Nat. Commun., 11, 2402(2020).
[45] Z. Qi, G. D’Aguanno, C. R. Menyuk. Nonlinear frequency combs generated by cnoidal waves in microring resonators. J. Opt. Soc. Am. B, 34, 785-794(2017).
[46] Z. Qi, S. Wang, J. Jaramillo-Villegas. Dissipative cnoidal waves (Turing rolls) and the soliton limit in microring resonators. Optica, 6, 1220-1232(2019).
[47] Z. Qi, A. Leshem, J. A. Jaramillo-Villegas. Deterministic access of broadband frequency combs in microresonators using cnoidal waves in the soliton crystal limit. Opt. Express, 28, 36304-36315(2020).
[48] H. Guo, M. Karpov, E. Lucas. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys., 13, 94-102(2017).
[49] T. Carmon, L. Yang, K. J. Vahala. Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express, 12, 4742-4750(2004).
微信里点“发现”,扫一下
二维码便可将本文分享至朋友圈。
Set citation alerts for the article
Please enter your email address
CancelConfirm