• Photonics Research
  • Vol. 12, Issue 7, 1464 (2024)
Yiran Gao1,2,3,†, Jian Dai1,2,†,*, Zhonghan Wu1,2..., Anni Liu1,2, Tian Zhang1,2, Wei Sun4, Junqiu Liu4,5,6 and Kun Xu1,2|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • 2School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • 3School of Communication Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
  • 4International Quantum Academy, Shenzhen 518048, China
  • 5Hefei National Laboratory, University of Science and Technology of China, Hefei 230026, China
  • 6e-mail: liujq@iqasz.cn
  • show less
    DOI: 10.1364/PRJ.519666 Cite this Article Set citation alerts
    Yiran Gao, Jian Dai, Zhonghan Wu, Anni Liu, Tian Zhang, Wei Sun, Junqiu Liu, Kun Xu, "Bichromatically pumped artificial cnoidal wave breathers in optical microresonators," Photonics Res. 12, 1464 (2024) Copy Citation Text show less
    References

    [1] K. J. Vahala. Optical microcavities. Nature, 424, 839-846(2003).

    [2] G. Lin, A. Coillet, Y. K. Chembo. Nonlinear photonics with high-Q whispering-gallery-mode resonators. Adv. Opt. Photon., 9, 828-890(2017).

    [3] P. Del’Haye, A. Schliesser, O. Arcizet. Optical frequency comb generation from a monolithic microresonator. Nature, 450, 1214-1217(2007).

    [4] T. J. Kippenberg, R. Holzwarth, S. A. Diddams. Microresonator-based optical frequency combs. Science, 332, 555-559(2011).

    [5] P. Marin-Palomo, J. N. Kemal, M. Karpov. Microresonator-based solitons for massively parallel coherent optical communications. Nature, 546, 274-279(2017).

    [6] M.-G. Suh, Q.-F. Yang, K. Y. Yang. Microresonator soliton dual-comb spectroscopy. Science, 354, 600-603(2016).

    [7] A. Dutt, C. Joshi, X. Ji. On-chip dual-comb source for spectroscopy. Sci. Adv., 4, e1701858(2018).

    [8] E. Lucas, G. Lihachev, R. Bouchand. Spatial multiplexing of soliton microcombs. Nat. Photonics, 12, 699-705(2018).

    [9] Z. Wang, Y. Wang, B. Shi. Rhythmic soliton interactions for integrated dual-microcomb spectroscopy. arXiv preprint(2024).

    [10] M.-G. Suh, K. J. Vahala. Soliton microcomb range measurement. Science, 359, 884-887(2018).

    [11] P. Trocha, M. Karpov, D. Ganin. Ultrafast optical ranging using microresonator soliton frequency combs. Science, 359, 887-891(2018).

    [12] J. Riemensberger, A. Lukashchuk, M. Karpov. Massively parallel coherent laser ranging using a soliton microcomb. Nature, 581, 164-170(2020).

    [13] W. Liang, D. Eliyahu, V. S. Ilchenko. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat. Commun., 6, 7957(2015).

    [14] J. Liu, E. Lucas, A. S. Raja. Photonic microwave generation in the X-and K-band using integrated soliton microcombs. Nat. Photonics, 14, 486-491(2020).

    [15] S. Zhang, J. M. Silver, X. Shang. Terahertz wave generation using a soliton microcomb. Opt. Express, 27, 35257-35266(2019).

    [16] B. Wang, J. S. Morgan, K. Sun. Towards high-power, high-coherence, integrated photonic mmWave platform with microcavity solitons. Light Sci. Appl., 10, 4(2021).

    [17] S.-W. Huang, J. Yang, S.-H. Yang. Globally stable microresonator Turing pattern formation for coherent high-power THz radiation on-chip. Phys. Rev. X, 7, 041002(2017).

    [18] X. Xu, M. Tan, B. Corcoran. Photonic perceptron based on a Kerr microcomb for high-speed, scalable, optical neural networks. Laser Photon. Rev., 14, 2000070(2020).

    [19] X. Xu, M. Tan, B. Corcoran. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature, 589, 44-51(2021).

    [20] J. Feldmann, N. Youngblood, M. Karpov. Parallel convolutional processing using an integrated photonic tensor core. Nature, 589, 52-58(2021).

    [21] T. Herr, V. Brasch, J. D. Jost. Temporal solitons in optical microresonators. Nat. Photonics, 8, 145-152(2014).

    [22] T. Herr, K. Hartinger, J. Riemensberger. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nat. Photonics, 6, 480-487(2012).

    [23] T. J. Kippenberg, A. L. Gaeta, M. Lipson. Dissipative Kerr solitons in optical microresonators. Science, 361, eaan8083(2018).

    [24] D. C. Cole, E. S. Lamb, P. Del’Haye. Soliton crystals in Kerr resonators. Nat. Photonics, 11, 671-676(2017).

    [25] W. Wang, Z. Lu, W. Zhang. Robust soliton crystals in a thermally controlled microresonator. Opt. Lett., 43, 2002-2005(2018).

    [26] M. Karpov, M. H. Pfeiffer, H. Guo. Dynamics of soliton crystals in optical microresonators. Nat. Phys., 15, 1071-1077(2019).

    [27] Y. He, J. Ling, M. Li. Perfect soliton crystals on demand. Laser Photon. Rev., 14, 1900339(2020).

    [28] F. Leo, L. Gelens, P. Emplit. Dynamics of one-dimensional Kerr cavity solitons. Opt. Express, 21, 9180-9191(2013).

    [29] C. Godey, I. V. Balakireva, A. Coillet. Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes. Phys. Rev. A, 89, 063814(2014).

    [30] C. Bao, J. A. Jaramillo-Villegas, Y. Xuan. Observation of Fermi-Pasta-Ulam recurrence induced by breather solitons in an optical microresonator. Phys. Rev. Lett., 117, 163901(2016).

    [31] M. Yu, J. K. Jang, Y. Okawachi. Breather soliton dynamics in microresonators. Nat. Commun., 8, 14569(2017).

    [32] E. Lucas, M. Karpov, H. Guo. Breathing dissipative solitons in optical microresonators. Nat. Commun., 8, 736(2017).

    [33] C. Bao, Y. Xuan, C. Wang. Observation of breathing dark pulses in normal dispersion optical microresonators. Phys. Rev. Lett., 121, 257401(2018).

    [34] S. Wan, R. Niu, Z.-Y. Wang. Frequency stabilization and tuning of breathing solitons in Si3N4 microresonators. Photon. Res., 8, 1342-1349(2020).

    [35] L. A. Lugiato, R. Lefever. Spatial dissipative structures in passive optical systems. Phys. Rev. Lett., 58, 2209-2211(1987).

    [36] S. Coen, H. G. Randle, T. Sylvestre. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato–Lefever model. Opt. Lett., 38, 37-39(2013).

    [37] T. Hansson, S. Wabnitz. Bichromatically pumped microresonator frequency combs. Phys. Rev. A, 90, 013811(2014).

    [38] H. Zhou, Y. Geng, W. Cui. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light Sci. Appl., 8, 50(2019).

    [39] C. Bao, P. Liao, A. Kordts. Dual-pump generation of high-coherence primary Kerr combs with multiple sub-lines. Opt. Lett., 42, 595-598(2017).

    [40] D. V. Strekalov, N. Yu. Generation of optical combs in a whispering gallery mode resonator from a bichromatic pump. Phys. Rev. A, 79, 041805(2009).

    [41] Y. Okawachi, M. Yu, K. Luke. Dual-pumped degenerate Kerr oscillator in a silicon nitride microresonator. Opt. Lett., 40, 5267-5270(2015).

    [42] W. Wang, S. T. Chu, B. E. Little. Dual-pump Kerr micro-cavity optical frequency comb with varying FSR spacing. Sci. Rep., 6, 28501(2016).

    [43] H. Zheng, W. Sun, X. Ding. Programmable access to microresonator solitons with modulational sideband heating. APL Photon., 8, 126110(2023).

    [44] W. Weng, R. Bouchand, E. Lucas. Heteronuclear soliton molecules in optical microresonators. Nat. Commun., 11, 2402(2020).

    [45] Z. Qi, G. D’Aguanno, C. R. Menyuk. Nonlinear frequency combs generated by cnoidal waves in microring resonators. J. Opt. Soc. Am. B, 34, 785-794(2017).

    [46] Z. Qi, S. Wang, J. Jaramillo-Villegas. Dissipative cnoidal waves (Turing rolls) and the soliton limit in microring resonators. Optica, 6, 1220-1232(2019).

    [47] Z. Qi, A. Leshem, J. A. Jaramillo-Villegas. Deterministic access of broadband frequency combs in microresonators using cnoidal waves in the soliton crystal limit. Opt. Express, 28, 36304-36315(2020).

    [48] H. Guo, M. Karpov, E. Lucas. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys., 13, 94-102(2017).

    [49] T. Carmon, L. Yang, K. J. Vahala. Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express, 12, 4742-4750(2004).

    Yiran Gao, Jian Dai, Zhonghan Wu, Anni Liu, Tian Zhang, Wei Sun, Junqiu Liu, Kun Xu, "Bichromatically pumped artificial cnoidal wave breathers in optical microresonators," Photonics Res. 12, 1464 (2024)
    Download Citation