• Journal of the European Optical Society-Rapid Publications
  • Vol. 20, Issue 1, 2024036 (2024)
Amit Halder*, Yeasin Arafat, Imtiage Ahmed, Muhammad Ahsan..., Zubairia Siddiquee, Riyad Tanshen and Shamim Anower|Show fewer author(s)
DOI: 10.1051/jeos/2024036 Cite this Article
Amit Halder, Yeasin Arafat, Imtiage Ahmed, Muhammad Ahsan, Zubairia Siddiquee, Riyad Tanshen, Shamim Anower. FEM analysis of a highly birefringent modified slotted core circular PCF for endlessly single mode operation across E to L telecom bands[J]. Journal of the European Optical Society-Rapid Publications, 2024, 20(1): 2024036 Copy Citation Text show less
References

[1] M. De, T.K. Gangopadhyay, V.K. Singh. Prospects of photonic crystal fiber as physical sensor: an overview. Sensors, 19, 464(2019).

[2] F. Benabid, P.J. Roberts. Linear and nonlinear optical properties of hollow core photonic crystal fiber. J. Mod. Opt., 58, 87-124(2011).

[3] Y.E. Monfared, A.M. Javan, A.M. Kashani. Confinement loss in hexagonal lattice photonic crystal fibers. Optik, 124, 7049-7052(2013).

[4] M.S. Hossain, S. Sen, M.M. Hossain. Performance analysis of octagonal photonic crystal fiber (O-PCF) for various communication applications. Phys. Scr., 96, 055506(2021).

[5] A. Kumar, P. Verma, P. Jindal. Decagonal solid core PCF based refractive index sensor for blood cells detection in terahertz regime. Opt. Quantum Electron., 53, 1-13(2021).

[6] S. Olyaee, F. Taghipour. Design of new square-lattice photonic crystal fibers for optical communication applications. Int. J. Physical Sci., 6, 4405-4411(2011).

[7] P.S. Maji, P.R. Chaudhuri. Studies of the modal properties of circularly photonic crystal fiber (C-PCF) for high power applications. Photon. Nanostruct. Fundam. Appl., 19, 12-23(2016).

[8] J. Liao, T. Huang, Z. Xiong, F. Kuang, Y. Xie. Design and analysis of an ultrahigh birefringent nonlinear spiral photonic crystal fiber with large negative flattened dispersion. Optik, 135, 42-49(2017).

[9] A. Halder, M.R. Tanshen, M.A. Hossain, M.S. Akter, M.A. Sikdar. Tailored dispersion and nonlinear effects in flint glass honeycomb PCF for optical communication. J. Opt. Photon. Res., 1, 43-49(2024).

[10] A. Halder, M.S. Anower. Relative dispersion slope matched highly birefringent and highly nonlinear dispersion compensating hybrid photonic crystal fiber. Photon. Nanostruct. Fundament. Appl., 35, 100704(2019).

[11] A. Halder. Slope matched highly birefringent hybrid dispersion compensating fiber over telecommunication bands with low confinement loss. J. Opt., 49, 187-195(2020).

[12] A. Halder. Design of a slope matched single mode highly birefringent dispersion compensating hybrid photonic crystal fiber(2023).

[13] G. Kumar, R.P. Gupta. Dispersion modeling of micro structure optical fibers for telecommunication deployment. Sci. Technol. Manage., 17, 10-18(2013).

[14] S. Singh, B. Chaudhary, A. Upadhyay, D. Sharma, N. Ayyanar, S.A. Taya. A review on various sensing prospects of SPR based photonic crystal fibers. Photon. Nanostruct.-Fundament. Appl., 54, 101119(2023).

[15] S. Lu, W. Li, H. Guo, M. Lu. Analysis of birefringent and dispersive properties of photonic crystal fibers. Appl. Opt., 50, 5798-5802(2011).

[16] A. Halder. Highly birefringent photonic crystal fiber for dispersion compensation over E+ S+ C+ L communication bands. 2016 5th International Conference on Informatics, Electronics and Vision (ICIEV), May, 1099-1103(2016).

[17] S.R. Islam, M.M. Islam, M.N.A. Rahman, M.M.A. Mia, M.S. Hakim, S.K. Biswas. Design of hexagonal photonic crystal fiber with ultra-high birefringent and large negative dispersion coefficient for the application of broadband fiber. Int. J. Eng. Sci. Tech., 2, 9-16(2017).

[18] M.N. Amin, M. Faisal, M.M. Rahman. Ultrahigh birefringent index guiding photonic crystal fibers. 2016 IEEE Region 10 Conference (TENCON), 2722-2725(2016).

[19] M. Liu, H. Yuan, P. Shum, C. Shao, H. Han, L. Chu. Simultaneous achievement of highly birefringent and nonlinear photonic crystal fibers with an elliptical tellurite core. Appl. Opt., 57, 6383-6387(2018).

[20] V.S. Chaudhary, D. Kumar, S. Sharma, V. Janyani, G. Singh, M. Tiwari, A. d’Alessandro. Design of high birefringence with two zero dispersion wavelength and highly nonlinear hybrid photonic crystal fiber. Optical and wireless technologies. Lecture notes in electrical engineering, 546, 301-306(2020).

[21] A. Halder. Slope matched highly birefringent hybrid dispersion compensating fiber over telecommunication bands with low confinement loss. J.Opt., 49, 187-195(2020).

[22] R. Liang, H. Zhao, L. Zhao, X. Li. Design and analysis of high birefringence photonic crystal fiber with sandwich structure. J. Phys. Conf. Ser., 1650, 022021(2020).

[23] M. Benlacheheb, L. Cherbi, A.N. Merabet. Highly birefringent fiber design based on polymer photonic crystal fiber with ultralow confinement loss for sensing application. Micro-Struct. Special. Opt. Fibres, VII, 148-155(2021).

[24] J. Wang. Numerical investigation of high birefringence and nonlinearity tellurite glass photonic crystal fiber with microstructured core. Appl. Opt., 60, 4455-4461(2021).

[25] Z. Du, F. Wei, J. He. High birefringence and nonlinearity photonic crystal fiber. J. Opt., 52, 665-671(2023).

[26] C. Priyadharshini, R. Devika, S. Selvendran, A.S. Raja. Investigating the cross core octagonal photonic crystal fiber with high birefringence: A design and analysis study. Mater. Today: Proc.(2023). https://doi.org/10.1016/j.matpr.2023.03.063

[27] H. Amit, W. Emon, MdS Anower, MdR Tanshen, Md Forkan, MdSU Shajib. Design and numerical analysis of ultra-high negative dispersion, highly birefringent nonlinear single mode core-tune photonic crystal fiber (CT-PCF) over communication bands. Opt. Photon. J., 13, 227-242(2023).

[28] Z. Liu, J. Wen, Z. Zhou, Y. Dong, T. Yang. A highly birefringent photonic crystal fiber based on a central trielliptic structure: FEM analysis. Physica Scripta, 98, 115607(2023).

[29] P.A. Agbemabiese, E.K. Akowuah. Numerical analysis of photonic crystal fibre with high birefringence and high nonlinearity. J. Opt. Commun., 44, s543-s550(2024).

[30] P. Monk. Finite element methods for Maxwell’s equations(2003).

[31] G. Ghosh. Sellmeier coefficients and dispersion of thermo-optic coefficients for some optical glasses. Appl. Opt., 36, 1540-1546(1997).

[32] G. Shao-Wen, C. Jun-Cheng, F. Song-Lin. Numerical analysis of multilayer waveguides using effective refractive index method. Commun. Theoret. Phys., 39, 327(2003).

[33] R. Ding, S. Hou, D. Wang, J. Lei, X. Li, Y. Ma. Novel design of a diamond-core photonic crystal fiber for terahertz wave transmission, 1148-1151(2017).

[34] D. Wu, F. Yu, Y. Liu, M. Liao. Dependence of waveguide properties of anti-resonant hollow-core fiber on refractive index of cladding material. J. Lightwave Technol., 37, 5593-5699(2019).

[35] Y. Zairmi, V. Veriyanti, W. Candra, R.F. Syahputra, Y. Soerbakti, V. Asyana, D. Irawan, H. Hairi, N.A. Hussein, S. Anita. Birefringence and polarization mode dispersion phenomena of commercial optical fiber in telecommunication networks. J. Phys. Conf. Ser., 1655, 012160(2020).

[36] N.A. Mortensen. Effective area of photonic crystal fibers. Opt. Exp., 10, 341-348(2002).

[37] Y. Yu, Y. Lian, Q. Hu, L. Xie, J. Ding, Y. Wang, Z. Lu. Design of PCF supporting 86 OAM modes with high mode quality and low nonlinear coefficient. Photonics, 9, 266(2022).

[38] A. Halder, M.R. Tanshen, M.S. Akter, M.A. Hossain. Design of highly birefringence and nonlinear Modified Honeycomb Lattice Photonic Crystal Fiber (MHL-PCF) for broadband dispersion compensation in E+ S+ C+ L communication bands. Eng. Proc., 56, 19(2023).

[39] A. Halder, M.S. Anower, W. Emon, M.R. Tanshen, M.S.U. Shajib. Design and finite element analysis of a single-mode modified circular microstructured optical fiber for high negative dispersion and high nonlinearity across E to L communication bands. 2023 26th International Conference on Computer and Information Technology (ICCIT), 1-5(2023).

[40] S. Luke, S.K. Sudheer, V.M. Pillai. Modeling and analysis of a highly birefringent chalcogenide photonic crystal fiber. Optik, 126, 3529-3532(2015).

[41] W.H. Reeves, J.C. Knight, P.S.J. Russell, P.J. Roberts. Demonstration of ultra-flattened dispersion in photonic crystal fibers. Opt. Exp., 10, 609-613(2002).

[42] G. Amouzad Mahdiraji, D.M. Chow, S.R. Sandoghchi, F. Amirkhan, E. Dermosesian, K.S. Yeo, Z. Kakaei, M. Ghomeishi, S.Y. Poh, S. Yu Gang, F.R. Mahamd Adikan. Challenges and solutions in fabrication of silica-based photonic crystal fibers: an experimental study. Fiber Integrated Opt., 33, 85-104(2014).

[43] T. Yajima, J. Yamamoto, F. Ishii, T. Hirooka, M. Yoshida, M. Nakazawa. Low-loss photonic crystal fiber fabricated by a slurry casting method. Opt. Exp., 21, 30500-30506(2013).

[44] J.C. Kim, H.K. Kim, U.C. Paek, B.H. Lee, J.B. Eom. The fabrication of a photonic crystal fiber and measurement of its properties. J. Opt. Soc. Korea, 7, 79-83(2003).

[45] P. Zhang, J. Zhang, P. Yang, S. Dai, X. Wang, W. Zhang. Fabrication of chalcogenide glass photonic crystal fibers with mechanical drilling. Optic. Fiber Technol., 26, 176-179(2015).

[46] W. Li, Q. Zhou, L. Zhang, S. Wang, M. Wang, C. Yu, S. Feng, D. Chen, L. Hu. Watt-level Yb-doped silica glass fiber laser with a core made by sol-gel method. Chin. Opt. Lett., 11(2013).

[47] R. Pravesh, D. Kumar, B.P. Pandey, V.S. Chaudhary, D. Singh, S. Kumar. Advanced refractive index sensor based on photonic crystal fiber with elliptically split cores. Opt. Quantum Electron., 55, 1205(2023).

Amit Halder, Yeasin Arafat, Imtiage Ahmed, Muhammad Ahsan, Zubairia Siddiquee, Riyad Tanshen, Shamim Anower. FEM analysis of a highly birefringent modified slotted core circular PCF for endlessly single mode operation across E to L telecom bands[J]. Journal of the European Optical Society-Rapid Publications, 2024, 20(1): 2024036
Download Citation