• Frontiers of Optoelectronics
  • Vol. 15, Issue 1, 12200 (2022)
Han Gao1、2, Miao Yang1, Xing Liu1, Xianglong Dai1, Xiao-Qing Bao3, and Dehua Xiong1、2、*
Author Affiliations
  • 1State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
  • 2Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • 3State Key Laboratory of Optical Technologies on Nanofabrication and Microengineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
  • show less
    DOI: 10.1007/s12200-022-00014-7 Cite this Article
    Han Gao, Miao Yang, Xing Liu, Xianglong Dai, Xiao-Qing Bao, Dehua Xiong. Hydrothermal synthesized delafossite CuGaO2 as an electrocatalyst for water oxidation[J]. Frontiers of Optoelectronics, 2022, 15(1): 12200 Copy Citation Text show less
    References

    [1] Zhong, L., Zhou, H., Li, R., Bian, T., Wang, S., Yuan, A.: In situ confinement pyrolysis of ZIF-67 nanocrystals on hollow carbon spheres towards efficient electrocatalysts for oxygen reduction. J. Colloid Interface Sci. 584, 439–448 (2021)

    [2] Qi, Y., Wu, J., Xu, J., Gao, H., Du, Z., Liu, B., Liu, L., Xiong, D.: One-step fabrication of a self-supported Co@CoTe2 electrocatalyst for efficient and durable oxygen evolution reactions. Inorg. Chem. Front. 7(13), 2523–2532 (2020)

    [3] Li, Y.S., Yi, J.W., Wei, J.H., Wu, Y.P., Li, B., Liu, S., Jiang, C., Yu, H.G., Li, D.S.: Three 2D polyhalogenated Co(II)-based MOFs: syntheses, crystal structure and electrocatalytic hydrogen evolution reaction. J. Solid State Chem. 281, 121052 (2020)

    [4] Harriman, A.: Electrochemical catalysts to meet the challenge for sustainable fuel production from renewable energy. Curr. Opin. Green Sustain. Chem. 30, 100492 (2021)

    [5] Chen, Z., Wei, W., Ni, B.J.: Cost-effective catalysts for renewable hydrogen production via electrochemical water splitting: recent advances. Curr. Opin. Green Sustain. Chem. 27, 100398 (2021)

    [6] Talib, S.H., Lu, Z., Yu, X., Ahmad, K., Bashir, B., Yang, Z., Li, J.: Theoretical inspection of M1/PMA single-atom electrocatalyst: ultra-high performance for water splitting (HER/OER) and oxygen reduction reactions (OER). ACS Catal. 11(14), 8929–8941 (2021)

    [7] Wang, C., Jin, L., Shang, H., Xu, H., Shiraishi, Y., Du, Y.: Advances in engineering RuO2 electrocatalysts towards oxygen evolution reaction. Chin. Chem. Lett. 32(7), 2108–2116 (2021)

    [8] Ye, C., Zhang, L., Yue, L., Deng, B., Cao, Y., Liu, Q., Luo, Y., Lu, S., Zheng, B., Sun, X.: A NiCo LDH nanosheet array on graphite felt: an efficient 3D electrocatalyst for the oxygen evolution reaction in alkaline media. Inorg. Chem. Front. 8(12), 3162–3166 (2021)

    [9] Weber, T., Vonk, V., Escalera, L.D., Abbondanza, G., Larsson, A., Koller, V., Abb, M., Hegedus, Z., Backer, T., Lienert, U., Harlow, G.S., Stierle, A., Cherevko, S., Lundgren, E., Over, H.: Operando stability studies of ultrathin single-crystalline IrO2(110) films under acidic oxygen evolution reaction conditions. ACS Catal. 11(20), 12651–12660 (2021)

    [10] Wang, Y., Hou, S., Ma, R., Jiang, J., Shi, Z., Liu, C., Ge, J., Xing, W.: Modulating crystallinity and surface electronic structure of IrO2 via gadolinium doping to promote acidic oxygen evolution. ACS Sustain. Chem. Eng. 9(32), 10710–10716 (2021)

    [11] Qiu, Y., Lopez-Ruiz, J.A., Sanyal, U., Andrews, E., Gutiérrez, O.Y., Holladay, J.D.: Anodic electrocatalytic conversion of carboxylic acids on thin films of RuO2, IrO2, and Pt. Appl. Catal. B 277, 119277 (2020)

    [12] Song, F., Bai, L., Moysiadou, A., Lee, S., Hu, C., Liardet, L., Hu, X.: Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: an application-inspired renaissance. J. Am. Chem. Soc. 140(25), 7748–7759 (2018)

    [13] Wang, D., Luo, D., Zhang, Y., Zhao, Y., Zhou, G., Shui, L., Chen, Z., Wang, X.: Deciphering interpenetrated interface of transition metal oxides/phosphates from atomic level for reliable Li/S electrocatalytic behavior. Nano Energy 81, 105602 (2021)

    [14] Cai, Z., Bu, X., Wang, P., Ho, J.C., Yang, J., Wang, X.: Recent advances in layered double hydroxide electrocatalysts for the oxygen evolution reaction. J. Mater. Chem. A Mater. Energy Sustain. 7(10), 5069–5089 (2019)

    [15] Yu, M., Zhou, S., Wang, Z., Zhao, J., Qiu, J.: Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene. Nano Energy 44, 181–190 (2018)

    [16] Feng, W., Pang, W., Xu, Y., Guo, A., Gao, X., Qiu, X., Chen, W.: Transition metal selenides for electrocatalytic hydrogen evolution reaction. ChemElectroChem 7(1), 31–54 (2019)

    [17] Peng, X., Yan, Y., Jin, X., Huang, C., Jin, W., Gao, B., Chu, P.K.: Recent advance and prospectives of electrocatalysts based on transition metal selenides for efficient water splitting. Nano Energy 78, 105234 (2020)

    [18] Qi, J., Lin, Y.P., Chen, D., Zhou, T., Zhang, W., Cao, R.: Autologous cobalt phosphates with modulated coordination sites for electrocatalytic water oxidation. Angew Chem. Int. Ed. 59(23), 8917–8921 (2020)

    [19] Xu, Y., Wang, R., Zheng, Y., Zhang, L., Jiao, T., Peng, Q., Liu, Z.: Facile preparation of self-assembled Ni/Co phosphates composite spheres with highly efficient HER electrocatalytic performances. Appl Surf Sci 509, 145383 (2020)

    [20] Zhao, S.Y., Zhang, B., Su, H., Zhang, J.J., Li, X.H., Wang, K.X., Chen, J.S., Wei, X., Feng, P.: Enhanced oxygen electroreduction over nitrogen-free carbon nanotube-supported CuFeO2 nanoparticles. J. Mater. Chem. A Mater. Energy Sustain. 6(10), 4331–4336 (2018)

    [21] Du, Z., Qian, J., Bai, J., Li, H., Wang, M., Zhao, X., Xiong, D.: Surfactant-modified hydrothermal synthesis of Ca-doped CuCoO2 nanosheets with abundant active sites for enhanced electrocatalytic oxygen evolution. Inorg. Chem. 59(14), 9889–9899 (2020)

    [22] Du, Z., Xiong, D., Verma, S.K., Liu, B., Zhao, X., Liu, L., Li, H.: A low temperature hydrothermal synthesis of delafossite CuCoO2 as an efficient electrocatalyst for the oxygen evolution reaction in alkaline solutions. Inorg. Chem. Front. 5(1), 183–188 (2018)

    [23] Xiong, D., Du, Z., Li, H., Xu, J., Li, J., Zhao, X., Liu, L.: Polyvinylpyrrolidone-assisted hydrothermal synthesis of CuCoO2 nanoplates with enhanced oxygen evolution reaction performance. ACS Sustain. Chem. Eng. 7(1), 1493–1501 (2019)

    [24] Mao, L., Mohan, S., Mao, Y.: Delafossite CuMnO2 as an efficient bifunctional oxygen and hydrogen evolution reaction electrocatalyst for water splitting. J. Electrochem. Soc. 166(6), H233–H242 (2019)

    [25] Zhang, R., Sun, Z., Zong, C., Lin, Z., Huang, H., Yang, K., Chen, J., Liu, S., Huang, M., Yang, Y., Zhang, W., Chen, Q.: Increase of Co 3D projected electronic density of states in AgCoO2 enabled an efficient electrocatalyst toward oxygen evolution reaction. Nano Energy 57, 753–760 (2019)

    [26] Choi, M., Yagi, S., Ohta, Y., Kido, K., Hayakawa, T.: Estimation of delafossite P-type CuGaO2/ ZnO hybrids as semiconductor photocatalyst by controlling particle size. J. Phys. Chem. Solids 150, 109845 (2021)

    [27] Munoz-García, A.B., Caputo, L., Schiavo, E., Baiano, C., Maddalena, P., Pavone, M.: Ab initio study of anchoring groups for CuGaO2 delafossite-based p-type dye sensitized solar cells. Front. Chem. 7, 158 (2019)

    [28] Zhao, Q.M., Zhao, Z.Y., Liu, Q.L., Yao, G.Y., Dong, X.D.: Delafossite CuGaO2 as promising visible-light-driven photocatalyst: synthesize, properties, and performances. J. Phys. D Appl. Phys. 53(13), 135102 (2020)

    [29] Ahmed, J., Mao, Y.: Synthesis, characterization and electrocatalytic properties of delafossite CuGaO2. J. Solid State Chem. 242, 77–85 (2016)

    [30] Ahmed, J., Poltavets, V.V., Prakash, J., Alshehri, S.M., Ahamad, T.: Sol-gel synthesis, structural characterization and bifunctional catalytic activity of nanocrystalline delafossite CuGaO2 particles. J. Alloy. Compd. 688, 1157–1161 (2016)

    [31] Xiong, D., Zeng, X., Zhang, W., Wang, H., Zhao, X., Chen, W., Cheng, Y.B.: Synthesis and characterization of CuAlO2 and AgAlO2 delafossite oxides through low-temperature hydrothermal methods. Inorg. Chem. 53(8), 4106–4116 (2014)

    [32] Xiong, D., Zhang, W., Zeng, X., Xu, Z., Chen, W., Cui, J., Wang, M., Sun, L., Cheng, Y.B.: Enhanced performance of p-type dyesensitized solar cells based on ultrasmall Mg-doped CuCrO2 nanocrystals. Chemsuschem 6(8), 1432–1437 (2013)

    [33] Xiong, D., Xu, Z., Zeng, X., Zhang, W., Chen, W., Xu, X., Wang, M., Cheng, Y.B.: Hydrothermal synthesis of ultrasmall CuCrO2 nanocrystal alternatives to NiO nanoparticles in efficient p-type dye-sensitized solar cells. J. Mater. Chem. 22(47), 24760–24768 (2012)

    [34] Xiong, D., Qi, Y., Li, X., Liu, X., Tao, H., Chen, W., Zhao, X.: Hydrothermal synthesis of delafossite CuFeO2 crystals at 100 ℃. RSC Adv. 5(61), 49280–49286 (2015)

    [35] Xiong, D., Zhang, Q., Verma, S.K., Bao, X.Q., Li, H., Zhao, X.: Crystal structural, optical properties and Mott-Schottky plots of p-type Ca doped CuFeO2 nanoplates. Mater. Res. Bull. 83, 141–147 (2016)

    [36] Xiong, D., Zhang, Q., Du, Z., Verma, S.K., Li, H., Zhao, X.: Low temperature hydrothermal synthesis mechanism and thermal stability of p-type CuMnO2 nanocrystals. New J. Chem. 40(7), 6498–6504 (2016)

    [37] Xiong, D., Gao, H., Deng, Y., Qi, Y., Du, Z., Zeng, X., Li, H.: Impact of Mg doping on the optical and electrical properties of p-type CuMnO2 ultrathin nanosheets. J. Mater. Sci.: Mater. Electron. 31(7), 5416–5452 (2020)

    [38] Deng, Y., Xiong, D., Gao, H., Wu, J., Verma, S.K., Liu, B., Zhao, X.: Hydrothermal synthesis of delafossite CuScO2 hexagonal plates as an electrocatalyst for the alkaline oxygen evolution reaction. Dalton Trans. (Cambridge, England) 49(11), 3519–3524 (2020)

    [39] Du, Z., Xiong, D., Qian, J., Zhang, T., Bai, J., Fang, D., Li, H.: Investigation of the structural, optical and electrical properties of Ca2+ doped CuCoO2 nanosheets. Dalton Trans. (Cambridge, England) 48(36), 13753–13759 (2019)

    [40] Du, Z., Qian, J., Zhang, T., Ji, C., Wu, J., Li, H., Xiong, D.: Solvothermal synthesis of CuCoO2 nanoplates using zeolitic imidazolate framework-67 (ZIF-67) as a Co-derived precursor. New J. Chem. 43(38), 15233–15239 (2019)

    [41] Gao, H., Zeng, X., Guo, Q., Yang, Z., Deng, Y., Li, H., Xiong, D.: P-type transparent conducting characteristics of delafossite Ca doped CuScO2 prepared by hydrothermal synthesis. Dalton Trans. (Cambridge, England) 50(15), 5262–5268 (2021)

    [42] Li, J.H., Wang, Y.S., Chen, Y.C., Kung, C.W.: Metal-organic frameworks toward electrocatalytic applications. Appl. Sci. (Basel, Switzerland) 9(12), 2427 (2019)

    [43] Yu, M., Natu, G., Ji, Z., Wu, Y.: p-Type dye-sensitized solar cells based on delafossite CuGaO2 nanoplates with saturation photovoltages exceeding 460 mV. J. Phys. Chem. Lett. 3(9), 1074–1078 (2012)

    [44] Yu, M., Draskovic, T.I., Wu, Y.: Understanding the crystallization mechanism of delafossite CuGaO2 for controlled hydrothermal synthesis of nanoparticles and nanoplates. Inorg. Chem. 53(11), 5845–5851 (2014)

    [45] Qiao, X., Jin, J., Luo, J., Fan, H., Cui, L., Wang, W., Liu, D., Liao, S.: In-situ formation of N doped hollow graphene nanospheres/CNTs architecture with encapsulated Fe3C@C nanoparticles as efficient bifunctional oxygen electrocatalysts. J. Alloy. Compd. 828, 154238 (2020)

    [46] Xu, S., Wang, M., Saranya, G., Chen, N., Zhang, L., He, Y., Wu, L., Gong, Y., Yao, Z., Wang, G., Wang, Z., Zhao, S., Tang, H., Chen, M., Gou, H.: Pressure-driven catalyst synthesis of Codoped Fe3C@carbon nano-onions for efficient oxygen evolution reaction. Appl. Catal. B 268, 118385 (2020)

    [47] Chiu, T.W., Huang, P.S.: Preparation of delafossite CuFeO2 corallike powder using a self-combustion glycine nitrate process. Ceram. Int. 39, S575–S578 (2013)

    [48] Zou, L., Kitta, M., Hong, J., Suenaga, K., Tsumori, N., Liu, Z., Xu, Q.: Fabrication of a spherical superstructure of carbon nanorods. Adv. Mater. 31(24), e1900440 (2019)

    [49] Zhao, R.D., Zhang, Y.M., Liu, Q.L., Zhao, Z.Y.: Effects of the preparation process on the photocatalytic performance of delafossite CuCrO2. Inorg. Chem. 59(22), 16679–16689 (2020)

    [50] Xin, S., Liu, G., Ma, X., Gong, J., Ma, B., Yan, Q., Chen, Q., Ma, D., Zhang, G., Gao, M., Xin, Y.: High efficiency heterogeneous fenton-like catalyst biochar modified CuFeO2 for the degradation of tetracycline: economical synthesis, catalytic performance and mechanism. Appl. Catal. B 280, 119386 (2021)

    [51] Li, T., Xu, M., Peng, K., Sun, Y., Wang, M., Dai, H., Liu, D., Xue, R., Chen, Z.: Evolution of microstructure, defect, optoelectronic and magnetic properties of Cu1-xCaxFeO2 ceramics. J. Phys. Chem. Solids 151, 109910 (2021)

    [52] Bourque, J.L., Biesinger, M.C., Baines, K.M.: Chemical state determination of molecular gallium compounds using XPS. Dalton Trans. (Cambridge, England) 45(18), 7678–7696 (2016)

    [53] Sarpaki, S., Cortezon-Tamarit, F., de Aguiar, S.R.M.M., Exner, R.M., Divall, D., Arrowsmith, R.L., Ge, H., Palomares, F.J., Carroll, L., Calatayud, D.G., Paisey, S.J., Aboagye, E.O., Pascu, S.I.: Radio- and nano-chemistry of aqueous Ga(iii) ions anchored onto graphene oxide-modified complexes. Nanoscale 12(12), 6603–6608 (2020)

    [54] Huang, R., Liu, T., Zhao, Y., Zhu, Y., Huang, Z., Li, F., Liu, J., Zhang, L., Zhang, S., Ding, A., Yang, H.: Angular dependent XPS study of surface band bending on Ga-polar N-GaN. Appl. Surf. Sci. 440, 637–642 (2018)

    [55] Grodzicki, M., Rousset, J.G., Ciechanowicz, P., Piskorska-Hommel, E., Hommel, D.: XPS studies on the role of arsenic incorporated into GaN. Vacuum 167, 73–76 (2019)

    [56] Wang, Z., Xu, J., Yang, J., Xue, Y., Dai, L.: Ultraviolet/ozone treatment for boosting OER activity of MOF nanoneedle arrays. Chem. Eng. J. 427, 131498 (2022)

    [57] Saad, A., Liu, D., Wu, Y., Song, Z., Li, Y., Najam, T., Zong, K., Tsiakaras, P., Cai, X.: Ag nanoparticles modified crumpled borophene supported Co3O4 catalyst showing superior oxygen evolution reaction (OER) performance. Appl. Catal. B 298, 120529 (2021)

    [58] Li, H., Tan, M., Huang, C., Luo, W., Yin, S.F., Yang, W.: Co2(OH)3Cl and MOF mediated synthesis of porous Co3O4/NC nanosheets for efficient OER catalysis. Appl. Surf. Sci. 542, 148739 (2021)

    [59] Kang, T., Kim, J.: Optimal cobalt-based catalyst containing highratio of oxygen vacancy synthesized from metal-organic-framework (MOF) for oxygen evolution reaction (OER) enhancement. Appl. Surf. Sci. 560, 150035 (2021)

    [60] Li, X., You, S., Du, J., Dai, Y., Chen, H., Cai, Z., Ren, N., Zou, J.: ZIF-67-derived Co3O4@ carbon protected by oxygen-buffering CeO2 as an efficient catalyst for boosting oxygen reduction/evolution reactions. J. Mater. Chem. A Mater. Energy Sustain. 7(45), 25853–25864 (2019)

    [61] Bhatti, A., Tahira, A., Gradone, A., Mazzaro, R., Morandi, V., Aftab, U., Abro, M.I., Nafady, A., Qi, K., Infantes-Molina, A., Vomiero, A., Lbupoto, Z.H.: Nanostructured Co3O4 electrocatalyst for OER: the role of organic polyelectrolytes as soft templates. Electrochim. Acta 398, 139338 (2021)

    [62] Bian, J., Su, R., Yao, Y., Wang, J., Zhou, J., Li, F., Wang, Z.L., Sun, C.: Mg doped perovskite LaNiO3 nanofibers as an efficient bifunctional catalyst for rechargeable zinc–air batteries. ACS Appl. Energy Mater. 2(1), 923–931 (2019)

    [63] Dai, J., Zhu, Y., Zhong, Y., Miao, J., Lin, B., Zhou, W., Shao, Z.: Enabling high and stable electrocatalytic activity of iron-based perovskite oxides for water splitting by combined bulk doping and morphology designing. Adv. Mater. Interfaces 6(1), 1801317 (2019)

    [64] Zhang, X., Chen, Y., Zhang, W., Yang, D.: Coral-like hierarchical architecture self-assembled by cobalt hexacyanoferrate nanocrystals and N-doped carbon nanoplatelets as efficient electrocatalyst for oxygen evolution reaction. J. Colloid Interface Sci. 558, 190–199 (2020)

    Han Gao, Miao Yang, Xing Liu, Xianglong Dai, Xiao-Qing Bao, Dehua Xiong. Hydrothermal synthesized delafossite CuGaO2 as an electrocatalyst for water oxidation[J]. Frontiers of Optoelectronics, 2022, 15(1): 12200
    Download Citation