• Acta Photonica Sinica
  • Vol. 53, Issue 7, 0753303 (2024)
Chunyan WU*, Yuliang ZHANG, Xinhui HE, Xiaoping YANG, and Xiujuan WANG**
Author Affiliations
  • School of Microelectronics, Hefei University of Technology, Hefei 230009, China
  • show less
    DOI: 10.3788/gzxb20245307.0753303 Cite this Article
    Chunyan WU, Yuliang ZHANG, Xinhui HE, Xiaoping YANG, Xiujuan WANG. Progress on Ultraviolet Photodetection Based on Narrow Bandgap Semiconductors (Invited)[J]. Acta Photonica Sinica, 2024, 53(7): 0753303 Copy Citation Text show less
    References

    [2] P E GLASER. Power from the sun: its future. Science, 162, 857-861(1968).

    [3] H Y CHEN, K W LIU, L F HU et al. New concept ultraviolet photodetectors. Materials Today, 18, 493-502(2015).

    [4] H Y CHEN, P P YU, Z Z ZHANG et al. Ultrasensitive self-powered solar-blind deep-ultraviolet photodetector based on all-solid-state polyaniline/MgZnO bilayer. Small, 12, 5809-5816(2016).

    [5] F G KAPP, J R PERLIN, E J HAGEDRON et al. Protection from UV light is an evolutionarily conserved feature of the haematopoietic niche. Nature, 558, 445-448(2018).

    [6] F KEPPLER, I VIGANO, A MCLEPD et al. Ultraviolet-radiation-induced methane emissions from meteorites and the Martian atmosphere. Nature, 486, 93-96(2012).

    [7] C XIE, X T LU, X W TONG et al. Recent progress in solar-blind deep ultraviolet photodetectors based on inorganic ultrawide bandgap semiconductors. Advanced Functional Materials, 29, 1806006(2019).

    [8] J X CHEN, W X OUYANG, W YANG et al. Recent progress of heterojunction ultraviolet photodetectors: material, integration, and applications. Advanced Functional Materials, 30, 1909909(2020).

    [9] F SHI, J G LU, H LU et al. Comparative studies of silicon photomultipliers and traditional vacuum photomultiplier tubes. Chinese Physics C, 35, 50-55(2011).

    [10] E GARUTTI. Silicon photomultipliers for high energy physics detectors. Journal of Instrumentation, 6, C10003(2011).

    [11] S NIKZAD, M HOENK, A D JEWELL et al. Single photon counting UV solar-blind detectors using silicon and III-nitride materials. Sensors, 16, 927(2016).

    [12] L SHI, S NIHTIANOV. Comparative study of silicon-based ultraviolet photodetectors. IEEE Sensors Journal, 12, 2453-2459(2012).

    [13] W D LI, S Y CHOU. Solar-blind deep-UV band-pass filter (250-350 nm) consisting of a metal nano-grid fabricated by nanoimprint lithography. Optics Express, 18, 931-937(2010).

    [14] E KUSDEMIR, D OZKENDIR, V FIRAT et al. Epitaxial graphene contact electrode for silicon carbide based ultraviolet photodetector. Journal of Physics D: Applied Physics, 48, 095104(2015).

    [15] H C ZHANG, F Z LIANG, K SONG et al. Demonstration of AlGaN/GaN-based ultraviolet phototransistor with a record high responsivity over 3.6 × 107 A/W. Applied Physics Letters, 118, 242105(2021).

    [16] Daoyou GUO, Peigang LI, Zhengwei CHEN et al. Ultra-wide bandgap semiconductor of β-Ga2O3 and its research progress of deep ultraviolet transparent electrode and solar-blind photodetector. Acta Physica Sinica, 68, 078501(2019).

    [17] A KALRA, U U MUAZZAM, R MURALIDHARAN et al. The road ahead for ultrawide bandgap solar-blind UV photodetectors. Journal of Applied Physics, 132, 150901(2022).

    [18] Y N HOU, Z X MEI, H L LIANG et al. Dual-band MgZnO ultraviolet photodetector integrated with Si. Applied Physics Letters, 120, 153510(2013).

    [19] Q CAI, H F YOU, H GUO et al. Progress on AlGaN-based solar-blind ultraviolet photodetectors and focal plane arrays. Light Science & Applications, 10, 94(2021).

    [20] W YANG, S S HULLAVARAD, B NAGARAJ et al. Compositionally-tuned epitaxial cubic MgxZn1-xO on Si(100) for deep ultraviolet photodetectors. Applied Physics Letters, 82, 3424-3426(2003).

    [22] S M SZE, K K NG. Physics of semiconductor devices(2007).

    [23] N V JOSHI. Photoconductivity: art: science & technology(1990).

    [24] M BUSCEMA, J O ISLAND, D J GROENENDIJK et al. Photocurrent generation with two-dimensional van der Waals semiconductors. Chemical Society Reviews, 44, 3691-3718(2015).

    [25] J M LIU. Photonic devices(2009).

    [26] J H MUN, H J KONG, J H LEE et al. Enhanced photocurrent performance of flexible micro-photodetector based on PN nanowires heterojunction using all-laser direct patterning. Advanced Functional Materials, 33, 2214950(2023).

    [27] Y ZHANG, X X YANG, Y P DAI et al. Ternary GePdS3: 1D van der Waals nanowires for integration of high-performance flexible photodetectors. ACS Nano, 17, 7941-8836.

    [28] Y B LI, S Y WANG, J H HONG et al. Polarization-sensitive photodetector based on high crystallinity quasi-1D Bisel nanowires synthesized via chemical vapor deposition. Small, 19, 2302623(2023).

    [29] L CAO, J S WHITE, J S PARK et al. Engineering light absorption in semiconductor nanowire devices. Nature Materials, 8, 643-647(2009).

    [30] A W SNYDER, J D LOVE. Optical waveguide theory(1983).

    [31] L CAO, P Y FAN, A P VASUDEV et al. Semiconductor nanowire optical antenna solar absorbers. Nano Letters, 10, 439-445(2010).

    [32] J Y LIU, J J WANG, D H LIN et al. Sensitive silicon nanowire ultraviolet B photodetector induced by leakage mode resonances. ACS Applied Materials & Interfaces, 14, 32341-32349(2022).

    [33] R BHARDWAJ, P SHARMA, R SINGH et al. High responsivity MgxZn1-xO based ultraviolet photodetector fabricated by dual ion beam sputtering. IEEE Sensors Journal, 18, 2744-2750(2018).

    [34] A GUNDIMEDA, S KRISHNA, N AGGARWAL et al. Fabrication of non-polar GaN based highly responsive and fast UV photodetector. Applied Physics Letters, 110, 103507(2017).

    [35] B WANG, P W LEU. Tunable and selective resonant absorption in vertical nanowires. Optics Letters, 37, 3756-3758(2012).

    [36] K T FOUNTAINE, W S WHITNEY, H A ATWATER. Resonant absorption in semiconductor nanowires and nanowire arrays: relating leaky waveguide modes to Bloch photonic crystal modes. Journal of Applied Physics, 116, 153106(2014).

    [37] J J WANG, C FU, H Y CHENG et al. Leaky mode resonance induced sensitive ultraviolet photodetector composed of graphene/small diameter silicon nanowire array heterojunctions. ACS Nano, 15, 16729-16737(2021).

    [39] C R CHEN, F Z MOU, L L XU et al. Light-steered isotropic semiconductor micromotors. Advanced Materials, 29, 1603374(2017).

    [40] Z A XIE, S F LIU, L X QIN et al. Refractive index and extinction coefficient of CH3NH3PbI3 studied by spectroscopic ellipsometry. Optical Materials Express, 5, 29-43(2015).

    [41] A ALI, K SHEHZAD, H W GUO et al. High-performance, flexible graphene/ultra-thin silicon ultraviolet image sensor. IEEE International Electron Devices Meeting, 203-206(2017).

    [42] R CAO, Y ZHANG, H D WANG et al. Solar-blind deep-ultraviolet photodetectors based on solution-synthesized quasi-2D Te nanosheets. Nanophotonics, 9, 2459-2466(2020).

    [43] C XIE, C K LIU, H L LOI et al. Perovskite-based phototransistors and hybrid photodetectors. Advanced Functional Materials, 30, 1903907(2020).

    [44] X LI, C LIU, F DING et al. Ultra-stable and sensitive ultraviolet photodetectors based on monocrystalline perovskite thin films. Advanced Functional Materials, 33, 2213360(2023).

    [45] G B CEN, Y B LV, Y YUAN et al. High-performance ultraviolet photodetectors based on MAPbCl3 perovskites for visible-light-insensitive defect detection. Journal of Materials Chemistry C, 11, 9341-9347(2023).

    [46] X L DENG, Z Q LI, F CAO et al. Woven fibrous photodetectors for scalable UV optical communication device. Advanced Functional Materials, 33, 2213334(2023).

    [47] M M LIU, L L ZHOU, S F LI et al. A sensitive UV photodetector based on non-wide bandgap MAPbBr3 nanosheet. IEEE Transactions on Electron Devices, 69, 5590-5594(2022).

    [48] C Y WU, Y X LE, L Y LIANG et al. Non-ultrawide bandgap CsPbBr3 nanosheet for sensitive deep ultraviolet photodetection. Journal of Materials Science & Technology, 159, 251-257(2023).

    [49] L BRITNELL, R M RIBEIRO, A ECKMANN et al. Strong light-matter interactions in heterostructures of atomically thin films. Science, 340, 1311-1314(2013).

    [50] F N XIA, H WANG, D XIAO et al. Two-dimensional material nanophotonics. Nature Photonics, 8, 889-907(2014).

    [51] M S LONG, P WANG, H H FANG et al. Progress, challenges, and opportunities for 2D material based photodetectors. Advanced Functional Materials, 29, 1803807(2019).

    [52] Y YAN, W Q XIONG, S S LI et al. Direct wide bandgap 2D GeSe2 monolayer toward anisotropic UV photodetection. Advanced Optical Materials, 7, 1900622(2019).

    [53] A SEGURA, J BOUVIER, M V ANDRES et al. Strong optical nonlinearities in gallium and indium selenides related to inter-valence-band transitions induced by light pulses. Physical Review B, 56, 4075-4084(1997).

    [54] S D LI, L H GE, Z LIU et al. Synthesis and photoresponse of large GaSe atomic layers. Nano Letters, 13, 2777-2781(2013).

    [55] S R ZHANG, S F ZHU, B J ZHAO et al. First-principles study of the elastic, electronic and optical properties of ε-GaSe layered semiconductor. Physica B: Condensed Matter, 436, 188-192(2014).

    [56] C Y WU, M WANG, J Y LI et al. Non-ultrawide bandgap semiconductor GaSe nanobelts for sensitive deep ultraviolet light photodetector application. Small, 18, 2200594(2022).

    Chunyan WU, Yuliang ZHANG, Xinhui HE, Xiaoping YANG, Xiujuan WANG. Progress on Ultraviolet Photodetection Based on Narrow Bandgap Semiconductors (Invited)[J]. Acta Photonica Sinica, 2024, 53(7): 0753303
    Download Citation