[2] P E GLASER. Power from the sun: its future. Science, 162, 857-861(1968).
[3] H Y CHEN, K W LIU, L F HU et al. New concept ultraviolet photodetectors. Materials Today, 18, 493-502(2015).
[4] H Y CHEN, P P YU, Z Z ZHANG et al. Ultrasensitive self-powered solar-blind deep-ultraviolet photodetector based on all-solid-state polyaniline/MgZnO bilayer. Small, 12, 5809-5816(2016).
[5] F G KAPP, J R PERLIN, E J HAGEDRON et al. Protection from UV light is an evolutionarily conserved feature of the haematopoietic niche. Nature, 558, 445-448(2018).
[6] F KEPPLER, I VIGANO, A MCLEPD et al. Ultraviolet-radiation-induced methane emissions from meteorites and the Martian atmosphere. Nature, 486, 93-96(2012).
[7] C XIE, X T LU, X W TONG et al. Recent progress in solar-blind deep ultraviolet photodetectors based on inorganic ultrawide bandgap semiconductors. Advanced Functional Materials, 29, 1806006(2019).
[8] J X CHEN, W X OUYANG, W YANG et al. Recent progress of heterojunction ultraviolet photodetectors: material, integration, and applications. Advanced Functional Materials, 30, 1909909(2020).
[9] F SHI, J G LU, H LU et al. Comparative studies of silicon photomultipliers and traditional vacuum photomultiplier tubes. Chinese Physics C, 35, 50-55(2011).
[10] E GARUTTI. Silicon photomultipliers for high energy physics detectors. Journal of Instrumentation, 6, C10003(2011).
[11] S NIKZAD, M HOENK, A D JEWELL et al. Single photon counting UV solar-blind detectors using silicon and III-nitride materials. Sensors, 16, 927(2016).
[12] L SHI, S NIHTIANOV. Comparative study of silicon-based ultraviolet photodetectors. IEEE Sensors Journal, 12, 2453-2459(2012).
[13] W D LI, S Y CHOU. Solar-blind deep-UV band-pass filter (250-350 nm) consisting of a metal nano-grid fabricated by nanoimprint lithography. Optics Express, 18, 931-937(2010).
[14] E KUSDEMIR, D OZKENDIR, V FIRAT et al. Epitaxial graphene contact electrode for silicon carbide based ultraviolet photodetector. Journal of Physics D: Applied Physics, 48, 095104(2015).
[15] H C ZHANG, F Z LIANG, K SONG et al. Demonstration of AlGaN/GaN-based ultraviolet phototransistor with a record high responsivity over 3.6 × 107 A/W. Applied Physics Letters, 118, 242105(2021).
[16] Daoyou GUO, Peigang LI, Zhengwei CHEN et al. Ultra-wide bandgap semiconductor of β-Ga2O3 and its research progress of deep ultraviolet transparent electrode and solar-blind photodetector. Acta Physica Sinica, 68, 078501(2019).
[17] A KALRA, U U MUAZZAM, R MURALIDHARAN et al. The road ahead for ultrawide bandgap solar-blind UV photodetectors. Journal of Applied Physics, 132, 150901(2022).
[18] Y N HOU, Z X MEI, H L LIANG et al. Dual-band MgZnO ultraviolet photodetector integrated with Si. Applied Physics Letters, 120, 153510(2013).
[19] Q CAI, H F YOU, H GUO et al. Progress on AlGaN-based solar-blind ultraviolet photodetectors and focal plane arrays. Light Science & Applications, 10, 94(2021).
[20] W YANG, S S HULLAVARAD, B NAGARAJ et al. Compositionally-tuned epitaxial cubic MgxZn1-xO on Si(100) for deep ultraviolet photodetectors. Applied Physics Letters, 82, 3424-3426(2003).
[22] S M SZE, K K NG. Physics of semiconductor devices(2007).
[23] N V JOSHI. Photoconductivity: art: science & technology(1990).
[24] M BUSCEMA, J O ISLAND, D J GROENENDIJK et al. Photocurrent generation with two-dimensional van der Waals semiconductors. Chemical Society Reviews, 44, 3691-3718(2015).
[25] J M LIU. Photonic devices(2009).
[26] J H MUN, H J KONG, J H LEE et al. Enhanced photocurrent performance of flexible micro-photodetector based on PN nanowires heterojunction using all-laser direct patterning. Advanced Functional Materials, 33, 2214950(2023).
[27] Y ZHANG, X X YANG, Y P DAI et al. Ternary GePdS3: 1D van der Waals nanowires for integration of high-performance flexible photodetectors. ACS Nano, 17, 7941-8836.
[28] Y B LI, S Y WANG, J H HONG et al. Polarization-sensitive photodetector based on high crystallinity quasi-1D Bisel nanowires synthesized via chemical vapor deposition. Small, 19, 2302623(2023).
[29] L CAO, J S WHITE, J S PARK et al. Engineering light absorption in semiconductor nanowire devices. Nature Materials, 8, 643-647(2009).
[30] A W SNYDER, J D LOVE. Optical waveguide theory(1983).
[31] L CAO, P Y FAN, A P VASUDEV et al. Semiconductor nanowire optical antenna solar absorbers. Nano Letters, 10, 439-445(2010).
[32] J Y LIU, J J WANG, D H LIN et al. Sensitive silicon nanowire ultraviolet B photodetector induced by leakage mode resonances. ACS Applied Materials & Interfaces, 14, 32341-32349(2022).
[33] R BHARDWAJ, P SHARMA, R SINGH et al. High responsivity MgxZn1-xO based ultraviolet photodetector fabricated by dual ion beam sputtering. IEEE Sensors Journal, 18, 2744-2750(2018).
[34] A GUNDIMEDA, S KRISHNA, N AGGARWAL et al. Fabrication of non-polar GaN based highly responsive and fast UV photodetector. Applied Physics Letters, 110, 103507(2017).
[35] B WANG, P W LEU. Tunable and selective resonant absorption in vertical nanowires. Optics Letters, 37, 3756-3758(2012).
[36] K T FOUNTAINE, W S WHITNEY, H A ATWATER. Resonant absorption in semiconductor nanowires and nanowire arrays: relating leaky waveguide modes to Bloch photonic crystal modes. Journal of Applied Physics, 116, 153106(2014).
[37] J J WANG, C FU, H Y CHENG et al. Leaky mode resonance induced sensitive ultraviolet photodetector composed of graphene/small diameter silicon nanowire array heterojunctions. ACS Nano, 15, 16729-16737(2021).
[39] C R CHEN, F Z MOU, L L XU et al. Light-steered isotropic semiconductor micromotors. Advanced Materials, 29, 1603374(2017).
[40] Z A XIE, S F LIU, L X QIN et al. Refractive index and extinction coefficient of CH3NH3PbI3 studied by spectroscopic ellipsometry. Optical Materials Express, 5, 29-43(2015).
[41] A ALI, K SHEHZAD, H W GUO et al. High-performance, flexible graphene/ultra-thin silicon ultraviolet image sensor. IEEE International Electron Devices Meeting, 203-206(2017).
[42] R CAO, Y ZHANG, H D WANG et al. Solar-blind deep-ultraviolet photodetectors based on solution-synthesized quasi-2D Te nanosheets. Nanophotonics, 9, 2459-2466(2020).
[43] C XIE, C K LIU, H L LOI et al. Perovskite-based phototransistors and hybrid photodetectors. Advanced Functional Materials, 30, 1903907(2020).
[44] X LI, C LIU, F DING et al. Ultra-stable and sensitive ultraviolet photodetectors based on monocrystalline perovskite thin films. Advanced Functional Materials, 33, 2213360(2023).
[45] G B CEN, Y B LV, Y YUAN et al. High-performance ultraviolet photodetectors based on MAPbCl3 perovskites for visible-light-insensitive defect detection. Journal of Materials Chemistry C, 11, 9341-9347(2023).
[46] X L DENG, Z Q LI, F CAO et al. Woven fibrous photodetectors for scalable UV optical communication device. Advanced Functional Materials, 33, 2213334(2023).
[47] M M LIU, L L ZHOU, S F LI et al. A sensitive UV photodetector based on non-wide bandgap MAPbBr3 nanosheet. IEEE Transactions on Electron Devices, 69, 5590-5594(2022).
[48] C Y WU, Y X LE, L Y LIANG et al. Non-ultrawide bandgap CsPbBr3 nanosheet for sensitive deep ultraviolet photodetection. Journal of Materials Science & Technology, 159, 251-257(2023).
[49] L BRITNELL, R M RIBEIRO, A ECKMANN et al. Strong light-matter interactions in heterostructures of atomically thin films. Science, 340, 1311-1314(2013).
[50] F N XIA, H WANG, D XIAO et al. Two-dimensional material nanophotonics. Nature Photonics, 8, 889-907(2014).
[51] M S LONG, P WANG, H H FANG et al. Progress, challenges, and opportunities for 2D material based photodetectors. Advanced Functional Materials, 29, 1803807(2019).
[52] Y YAN, W Q XIONG, S S LI et al. Direct wide bandgap 2D GeSe2 monolayer toward anisotropic UV photodetection. Advanced Optical Materials, 7, 1900622(2019).
[53] A SEGURA, J BOUVIER, M V ANDRES et al. Strong optical nonlinearities in gallium and indium selenides related to inter-valence-band transitions induced by light pulses. Physical Review B, 56, 4075-4084(1997).
[54] S D LI, L H GE, Z LIU et al. Synthesis and photoresponse of large GaSe atomic layers. Nano Letters, 13, 2777-2781(2013).
[55] S R ZHANG, S F ZHU, B J ZHAO et al. First-principles study of the elastic, electronic and optical properties of ε-GaSe layered semiconductor. Physica B: Condensed Matter, 436, 188-192(2014).
[56] C Y WU, M WANG, J Y LI et al. Non-ultrawide bandgap semiconductor GaSe nanobelts for sensitive deep ultraviolet light photodetector application. Small, 18, 2200594(2022).