• Photonics Research
  • Vol. 10, Issue 9, 2032 (2022)
Gui-Ming Pan1、5、*, Li-Feng Yang2, Fang-Zhou Shu3, Yan-Long Meng1, Zhi Hong3, and Zhong-Jian Yang4、6、*
Author Affiliations
  • 1College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
  • 2First People’s Hospital of Changzhou, Changzhou 213000, China
  • 3Centre for THz Research, China Jiliang University, Hangzhou 310018, China
  • 4Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha 410083, China
  • 5e-mail: gmpan@cjlu.edu.cn
  • 6e-mail: zjyang@csu.edu.cn
  • show less
    DOI: 10.1364/PRJ.461415 Cite this Article Set citation alerts
    Gui-Ming Pan, Li-Feng Yang, Fang-Zhou Shu, Yan-Long Meng, Zhi Hong, Zhong-Jian Yang. Tailoring magnetic dipole emission by coupling to magnetic plasmonic anapole states[J]. Photonics Research, 2022, 10(9): 2032 Copy Citation Text show less
    References

    [1] S. Karaveli, S. Wang, G. Xiao, R. Zia. Time-resolved energy-momentum spectroscopy of electric and magnetic dipole transitions in Cr3+:MgO. ACS Nano, 7, 7165-7172(2013).

    [2] M. Kasperczyk, S. Person, D. Ananias, L. D. Carlos, L. Novotny. Excitation of magnetic dipole transitions at optical frequencies. Phys. Rev. Lett., 114, 163903(2015).

    [3] J. Li, N. Verellen, P. V. Dorpe. Enhancing magnetic dipole emission by a nano-doughnut-shaped silicon disk. ACS Photon., 4, 1893-1898(2017).

    [4] S. M. Hein, H. Giessen. Tailoring magnetic dipole emission with plasmonic split-ring resonators. Phys. Rev. Lett., 111, 026803(2013).

    [5] M. Pelton. Modified spontaneous emission in nanophotonic structures. Nat. Photonics, 9, 427-435(2015).

    [6] T. Feng, W. Zhang, Z. Liang, Y. Xu, A. E. Miroshnichenko. Isotropic magnetic Purcell effect. ACS Photon., 5, 678-683(2018).

    [7] E. Zanganeh, M. Song, A. C. Valero, A. S. Shalin, E. Nenasheva, A. Miroshnichenko, A. Evlyukhin, P. Kapitanova. Nonradiating sources for efficient wireless power transfer. Nanophotonics, 10, 4399-4408(2021).

    [8] E. M. Purcell, H. C. Torrey, R. V. Pound. Resonance absorption by nuclear magnetic moment in a solid. Phys. Rev., 69, 37-38(1946).

    [9] M. Burresi, T. Kampfrath, D. van Oosten, J. C. Prangsma, B. S. Song, S. Noda, L. Kuipers. Magnetic light-matter interactions in a photonic crystal nanocavity. Phys. Rev. Lett., 105, 123901(2010).

    [10] S. Vignolini, F. Intonti, F. Riboli, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, D. S. Wiersma, M. Gurioli. Magnetic imaging in photonic crystal microcavities. Phys. Rev. Lett., 105, 123902(2010).

    [11] R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. Garcá-Parajó, S. Bidault, J. Wenger, N. Bonod. All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules. Nano Lett., 16, 5143-5151(2016).

    [12] M. Sanz-Paz, C. Ernandes, J. U. Esparza, G. W. Burr, N. F. van Hulst, A. Maitre, L. Aigouy, T. Gacoin, N. Bonod, M. F. Garcia-Parajo, S. Bidault, M. Mivelle. Enhancing magnetic light emission with all-dielectric optical nanoantennas. Nano Lett., 18, 3481-3487(2018).

    [13] E. Zanganeh, A. Evlyukhin, A. Miroshnichenko, M. Song, E. Nenasheva, P. Kapitanova. Anapole meta-atoms: nonradiating electric and magnetic sources. Phys. Rev. Lett., 127, 096804(2021).

    [14] A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N. Chichkov, Y. S. Kivshar. Nonradiating anapole modes in dielectric nanoparticles. Nat. Commun., 8, 8069(2015).

    [15] T. Feng, Y. Xu, W. Zhang, A. E. Miroshnichenko. Ideal magnetic dipole scattering. Phys. Rev. Lett., 118, 173901(2017).

    [16] K. V. Baryshnikova, D. A. Smirnova, B. S. Lukyanchuk, Y. Kivshar. Optical anapoles: concepts and applications. Adv. Opt. Mater., 7, 1801350(2019).

    [17] V. Savinov, N. Papasimakis, D. P. Tsai, N. I. Zheludev. Optical anapoles. Commun. Phys., 2, 69(2019).

    [18] G.-M. Pan, F.-Z. Shu, L. Wang, L. Shi, A. B. Evlyukhin. Plasmonic anapole states of active metamolecules. Photon. Res., 9, 822-828(2021).

    [19] E. Díaz-Escobar, T. Bauer, E. Pinilla-Cienfuegos, Á. I. Barreda, A. Griol, L. Kuipers, A. Martínez. Radiationless anapole states in on-chip photonics. Light Sci. Appl., 10, 204(2021).

    [20] A. G. Lamprianidis, A. E. Miroshnichenko. Excitation of nonradiating magnetic anapole states with azimuthally polarized vector beams. Beilstein J. Nanotechnol., 9, 1478-1490(2018).

    [21] E. A. Gurvitz, K. S. Ladutenko, P. A. Dergachev, A. B. Evlyukhin, A. E. Miroshnichenko, A. S. Shalin. The high-order toroidal moments and anapole states in all-dielectric photonics. Laser Photon. Rev., 13, 1800266(2019).

    [22] Z.-J. Yang, Y.-H. Deng, Y. Yu, J. He. Magnetic toroidal dipole response in individual all-dielectric nanodisk clusters. Nanoscale, 12, 10639-10646(2020).

    [23] P. Kapitanova, E. Zanganeh, N. Pavlov, M. Song, P. Belov, A. Evlyukhin, A. Miroshnichenko. Seeing the unseen: experimental observation of magnetic anapole state inside a high-index dielectric particle. Ann. Phys., 532, 2000293(2020).

    [24] V. A. Fedotov, A. V. Rogacheva, V. Savinov, D. P. Tsai, N. I. Zheludev. Resonant transparency and non-trivial non-radiating excitations in toroidal metamaterials. Sci. Rep., 3, 2967(2013).

    [25] Y. Yang, S. I. Bozhevolnyi. Nonradiating anapole states in nanophotonics: from fundamentals to applications. Nanotechnology, 30, 204001(2019).

    [26] Y. Lu, Y. Xu, X. Ouyang, M. Xian, Y. Cao, K. Chen, X. Li. Cylindrical vector beams reveal radiationless anapole condition in a resonant state. Opto-Electron. Adv., 5, 210014(2022).

    [27] P. Nordlander, C. Oubre. Plasmon hybridization in nanoparticle. Nano Lett., 4, 899-903(2004).

    [28] M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, M. Finazzi. Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation. Nat. Nanotechnol., 10, 412-417(2015).

    [29] G.-M. Pan, D.-J. Yang, L. Zhou, Z.-H. Hao, Q.-Q. Wang. Enhanced second harmonic generation by mode matching in gain-assisted double-plasmonic resonance nanostructure. Sci. Rep., 7, 9776(2017).

    [30] D. Dregely, M. Hentschel, H. Giessen. Excitation and tuning of higher-order Fano resonances in plasmonic oligomer clusters. Nano Lett., 5, 8202-8211(2011).

    [31] N. Liu, S. Mukherjee, K. Bao, Y. Li, L. V. Brown, P. Nordlander, N. J. Halas. Manipulating magnetic plasmon propagation in metallic nanocluster networks. Nano Lett., 6, 5482-5488(2012).

    [32] R. Verre, Z. J. Yang, T. Shegai, M. Kall. Optical magnetism and plasmonic Fano resonances in metal–insulator–metal oligomers. Nano Lett., 15, 1952-1958(2015).

    [33] E.-M. Roller, L. K. Khorashad, M. Fedoruk, R. Schreiber, A. O. Govorov, T. Liedl. DNA-assembled nanoparticle rings exhibit electric and magnetic resonances at visible frequencies. Nano Lett., 15, 1368-1373(2015).

    [34] B. Ögüt, N. Talebi, R. Vogelgesang, W. Sigle, P. A. Van Aken. Toroidal plasmonic eigenmodes in oligomer nanocavities for the visible. Nano Lett., 12, 5239-5244(2012).

    [35] Y. Bao, Z. Hu, Z. Li, X. Zhu, Z. Fang. Magnetic plasmonic Fano resonance at optical frequency. Small, 11, 2177-2181(2015).

    [36] G.-M. Pan, D.-J. Yang, L. Zhou, Z.-H. Hao. Low-loss resonance modes in a gain-assisted plasmonic multimer. J. Phys. D, 51, 115104(2018).

    [37] Z. Qian, Z. Li, H. Hao, L. Shan, Q. Zhang, J. Dong, Q. Gong, Y. Gu. Absorption reduction of large Purcell enhancement enabled by topological state-led mode coupling. Phys. Rev. Lett., 126, 023901(2021).

    [38] H. Wei, X. Yan, Y. Niu, Q. Li, Z. Jia, H. Xu. Plasmon-exciton interactions: spontaneous emission and strong coupling. Adv. Funct. Mater., 31, 2100889(2021).

    [39] A. C. Valero, E. A. Gurvitz, F. A. Benimetskiy, D. A. Pidgayko, A. Samusev, A. B. Evlyukhin, V. Bobrovs, D. Redka, M. I. Tribelsky, M. Rahmani, K. Z. Kamali, A. A. Pavlov, A. E. Miroshnichenko, A. S. Shalin. Theory, observation, and ultrafast response of the hybrid anapole regime in light scattering. Laser Photon. Rev., 15, 2100114(2021).

    [40] H. Kim, S. Z. Uddin, N. Higashitarumizu, E. Rabani, A. Javey. Inhibited nonradiative decay at all exciton densities in monolayer semiconductors. Science, 373, 448-452(2021).

    [41] L. Cumming. Ampere’s rule. Nature, 34, 192-193(1886).

    [42] D. J. Jackson. Classical Electrodynamics(1998).

    [43] A. Nazir, S. Panaro, R. Proietti Zaccaria, C. Liberale, F. De Angelis, A. Toma. Fano coil-type resonance for magnetic hot-spot generation. Nano Lett., 14, 3166-3171(2014).

    [44] D.-J. Yang, S.-J. Im, G.-M. Pan, S.-J. Ding, Z.-J. Yang, Z.-H. Hao, L. Zhou, Q.-Q. Wang. Magnetic Fano resonance-induced second-harmonic generation enhancement in plasmonic metamolecule rings. Nanoscale, 9, 6068-6075(2017).

    [45] S.-D. Liu, P. Yue, S. Zhang, M. Wang, H. Dai, Y. Chen, Z.-Q. Nie, Y. Cui, J.-B. Han, H. Duan. Metasurfaces composed of plasmonic molecules: hybridization between parallel and orthogonal surface lattice resonances. Adv. Opt. Mater., 8, 1901109(2020).

    [46] P. B. Johnson, R. W. Christy. Optical constants of the noble metals. Phys. Rev. B, 6, 4370-4379(1972).

    [47] P. Grahn, A. Shevchenko, M. Kaivola. Electromagnetic multipole theory for optical nanomaterials. New J. Phys., 14, 093033(2012).

    [48] D. Sikdar, W. Cheng, M. Premaratne. Optically resonant magneto-electric cubic nanoantennas for ultra-directional light scattering. J. Appl. Phys., 117, 083101(2015).

    Gui-Ming Pan, Li-Feng Yang, Fang-Zhou Shu, Yan-Long Meng, Zhi Hong, Zhong-Jian Yang. Tailoring magnetic dipole emission by coupling to magnetic plasmonic anapole states[J]. Photonics Research, 2022, 10(9): 2032
    Download Citation