• Frontiers of Optoelectronics
  • Vol. 10, Issue 2, 117 (2017)
Feng GAO, Yuchun LIU, Yan XIONG, Ping WU, Bin HU, and Ling XU*
Author Affiliations
  • Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    DOI: 10.1007/s12200-017-0712-x Cite this Article
    Feng GAO, Yuchun LIU, Yan XIONG, Ping WU, Bin HU, Ling XU. Fabricate organic thermoelectric modules use modified PCBM and PEDOT:PSS materials[J]. Frontiers of Optoelectronics, 2017, 10(2): 117 Copy Citation Text show less

    Abstract

    In this paper, we fabricated an organic thermoelectric (TE) device with modified [6,6]-phenyl-C61- butyric acid methyl ester (PCBM) and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS); the device showed good stability in air condition. For n-leg, PCBM were doped with acridine orange base (3,6-bis (dimethylamino)acridine) (AOB) and 1,3-dimethyl-2,3- dihydro-1H-benzoimidazole (N-DMBI). Co-doped PCBM utilizes synergistic effects of AOB and N-DMBI, resulting in excellent electrical conductivity and Seebeck coefficient values reaching 2 S/cm and -500 μV/K, respectively, at room temperature with dopant molar ratio of 0.11. P-type leg used modified PEDOT:PSS. Based on modified PCBM and PEDOT:PSS materials, we fabricated a TE module device with 48 p-type and n-type thermocouple and tested their output voltage, short current, and power. Output voltage measured ~0.82 V, and generated power reached almost 945 μW with 75 K temperature gradient at 453 K hot-side temperature. These promising results showed potential of modified PEDOT and PCBM as TE materials for application in device optimization.
    Feng GAO, Yuchun LIU, Yan XIONG, Ping WU, Bin HU, Ling XU. Fabricate organic thermoelectric modules use modified PCBM and PEDOT:PSS materials[J]. Frontiers of Optoelectronics, 2017, 10(2): 117
    Download Citation