• Photonics Research
  • Vol. 5, Issue 3, 194 (2017)
Lingling Dai1、2, Yiheng Yin1, Yanhui Hu1、2, Biyao Yang1, and Ming Ding1、2、*
Author Affiliations
  • 1School of Instrument Science and Opto-Electronics Engineering, Beihang University, Beijing 100191, China
  • 2International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, China
  • show less
    DOI: 10.1364/PRJ.5.000194 Cite this Article Set citation alerts
    Lingling Dai, Yiheng Yin, Yanhui Hu, Biyao Yang, Ming Ding. Effects of the slot width and angular position on the mode splitting in slotted optical microdisk resonator[J]. Photonics Research, 2017, 5(3): 194 Copy Citation Text show less
    References

    [1] A. B. Matsko, V. S. Ilchenko. Optical resonators with whispering-gallery modes-part I: basics. IEEE J. Sel. Top. Quantum Electron., 12, 15-32(2013).

    [2] K. J. Vahala. Optical microcavities. Nature, 424, 839-846(2015).

    [3] S. M. Spillane, T. J. Kippenberg, K. J. Vahala. Ultralow-threshold Raman laser using a spherical dielectric microcavity. Nature, 415, 621-623(2002).

    [4] H. Rokhsari, K. J. Vahala. Ultralow loss, high Q, four port resonant couplers for quantum optics and photonics. Phys. Rev. Lett., 92, 253905(2004).

    [5] T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, H. J. Kimble. Observation of strong coupling between one atom and a monolithic microresonator. Nature, 443, 671-674(2006).

    [6] J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, A. Bachtold. A nanomechanical mass sensor with yoctogram resolution. Nat. Nanotechnol., 7, 301-304(2012).

    [7] A. R. Ali, T. Ioppolo, V. Ötügen, M. Christensen, D. MacFarlane. Photonic electric field sensor based on polymeric microspheres. J. Polym. Sci. B, 52, 276-279(2014).

    [8] F. Vollmer, L. Yang. Review label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices. Nanophotonics, 1, 267-291(2012).

    [9] A. M. Armani, R. P. Kulkarni, S. E. Fraser. Label-free, single-molecule detection with optical micro-cavities. Science, 317, 783-787(2007).

    [10] S. M. Grist, S. A. Schmidt, J. Flueckiger. Silicon photonic micro-disk resonators for label-free biosensing. Opt. Express, 21, 7994-8006(2013).

    [11] T. J. Kippenberg, S. M. Spillane, K. J. Vahala. Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip. Appl. Phys. Lett., 85, 6113-6115(2004).

    [12] D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala. Ultra-high-Q toroid microcavity on a chip. Nature, 421, 925-928(2003).

    [13] M. L. Gorodetsky, A. D. Pryamikov, V. S. Ilchenko. Rayleigh scattering in high-Q microspheres. J. Opt. Soc. Am. B, 17, 1051-1057(2000).

    [14] D. Farnesi, A. Barucci, G. C. Righini. Optical frequency conversion in silica-whispering-gallery-mode microspherical resonators. Phys. Rev. Lett., 112, 093901(2014).

    [15] D. O’Shea, A. Rettenmaier, A. Rauschenbeutel. Active frequency stabilization of an ultra-high Q whispering-gallery-mode microresonator. Appl. Phys. B, 99, 623-627(2010).

    [16] C. Junge, S. Nickel, D. O’Shea. Bottle microresonator with actively stabilized evanescent coupling. Opt. Lett., 36, 3488-3490(2011).

    [17] D. S. Weiss, V. Sandoghdar, J. Hare, V. Lefevre-Seguin, J. M. Raimond, S. Haroche. Splitting of high-Q Mie modes induced by light backscattering in silica microspheres. Opt. Lett., 20, 1835-1837(1995).

    [18] J. Zhu, S. K. Özdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, L. Yang. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat. Photonics, 4, 46-49(2009).

    [19] J. Wiersig. Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection. Phys. Rev. Lett., 112, 203901(2014).

    [20] X. Yi, Y. F. Xiao, Y. C. Liu, B. B. Li, Y. L. Chen, Y. Li, Q. H. Gong. Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q, whispering-gallery-mode microresonator. Phys. Rev. A, 83, 23803(2011).

    [21] T. J. Kippenberg. Microresonators: particle sizing by mode splitting. Nat. Photonics, 4, 9-10(2010).

    [22] B. B. Li, W. R. Clements, X. C. Yu, K. B. Shi, Q. H. Gong, Y. F. Xiao. Single nanoparticle detection using split-mode microcavity Raman lasers. Proc. Natl. Acad. Sci. USA, 111, 14657-14662(2014).

    [23] L. He, S. K. Özdemir, J. Zhu, L. Yang. Ultra-sensitive detection of mode splitting in active optical microcavities. Phys. Rev. A, 82, 053810(2010).

    [24] L. He, S. K. Ozdemir, Y. F. Xiao, L. Yang. Gain-induced evolution of mode splitting spectra in a high-, active microresonator. IEEE J. Quantum Electron., 46, 1626-1633(2010).

    [25] D. C. Aveline, D. V. Strekalov, N. Yu. Micro-slotted whispering gallery mode resonators for optomechanical. Appl. Phys. Lett., 105, 021111(2014).

    [26] S. Wang, K. Broderick, H. Smith. Strong coupling between on chip notched ring resonator and nanoparticle. Appl. Phys. Lett., 97, 051102(2010).

    [27] A. Mazzei, S. Gotzinger, L. S. Menezes, G. Zumofen, O. Benson, V. Sandoghdar. Controlled coupling of counter propagating whispering-gallery modes by a single Rayleigh scatterer: a classical problem in a quantum optical light. Phys. Rev. Lett., 99, 173603(2007).

    [28] S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, Y. Fink. Perturbation theory for Maxwell’s equations with shifting material boundaries. Phys. Rev. E, 65, 066611(2002).

    CLP Journals

    [1] Kathleen McGarvey, Pablo Bianucci. General treatment of dielectric perturbations in optical rings[J]. Advanced Photonics Nexus, 2022, 1(1): 016004

    Lingling Dai, Yiheng Yin, Yanhui Hu, Biyao Yang, Ming Ding. Effects of the slot width and angular position on the mode splitting in slotted optical microdisk resonator[J]. Photonics Research, 2017, 5(3): 194
    Download Citation