• Chinese Journal of Lasers
  • Vol. 50, Issue 21, 2107403 (2023)
Qiankun Li1, Meiqi Ding1, Lin Gui2、*, Xiaoxuan Lian1, and Min Qian1
Author Affiliations
  • 1School of Intelligent Manufacturing and Control Engineering, Shanghai Polytechnic University, Shanghai 201209, China
  • 2School of Computer and Information Engineering, Shanghai Polytechnic University, Shanghai 201209, China
  • show less
    DOI: 10.3788/CJL230947 Cite this Article Set citation alerts
    Qiankun Li, Meiqi Ding, Lin Gui, Xiaoxuan Lian, Min Qian. Chlorophyll Detection Based on Radio Frequency Intensity of a Microwave Photonic Filter[J]. Chinese Journal of Lasers, 2023, 50(21): 2107403 Copy Citation Text show less
    References

    [1] Cui J S, Lü P Y, Duan L L. Development of seawater chlorophyll on-line detector[J]. Analytical Instrumentation, 12-16(2014).

    [2] Li J, Le J, Wan W B et al. Design of LED-induced chlorophyll fluorescence spectrum detection system[J]. Analytical Instrumentation, 11-15(2014).

    [3] Wu H J, Zhang X, Wang M et al. Design and implementation of chlorophyll fluorescence detection system[J]. Electronic Measurement Technology, 37, 121-124(2014).

    [4] Peng Y, He L, Chen X Z. Detection and analysis of chlorophyll content in leaves of Camellia oleifera seedlings[J]. Agricultural Technology & Equipment, 120-121(2021).

    [5] Weng H Y, Huang J K, Wan L et al. Rapidly detecting chlorophyll content in oilseed rape based on spectral reconstruction and its device development[J]. Spectroscopy and Spectral Analysis, 41, 210-215(2021).

    [6] Tang W J, Wang N, Liu G H et al. Design of portable crop chlorophyll detector based on light environment correction[J]. Transactions of the Chinese Society for Agricultural Machinery, 53, 249-256(2022).

    [7] Cui J S[M]. Development of a field detector for chlorophyll content in seawater.

    [8] Lai L, Zhang Y C, Jing Y Y et al. Research progress on remote sensing monitoring of phytoplankton in eutrophic water[J]. Journal of Lake Sciences, 33, 1299-1314(2021).

    [9] Li K P, He Y, Hou C H et al. Detection of chlorophyll profiles from coastal to oceanic water by dual-wavelength ocean lidar[J]. Chinese Journal of Lasers, 48, 2010002(2021).

    [10] Tong Y S. Research and design of self-contained seawater chlorophyll detector[D](2018).

    [11] Chen J J. Design and experiment of reflective leaf chlorophyll content detector based on active light source[D](2020).

    [12] Liu L N. Research on real-time detection system of chlorophyll fluorescence induced by near-ultraviolet laser[D](2022).

    [13] Senesi G S, de Pascale O, Marangoni B S et al. Chlorophyll fluorescence imaging (CFI) and laser-induced breakdown spectroscopy (LIBS) applied to investigate tomato plants infected by the root knot nematode (RKN) Meloidogyne incognita and tobacco plants infected by cymbidium ringspot virus[J]. Photonics, 9, 627(2022).

    [14] Shan D C, Zhao Y N, Zhang M H et al. Preliminary study on monitoring wheat powdery mildew at seedling stage by chlorophyll fluorescence imaging technology[J]. Plant Protection, 48, 99-107(2022).

    [15] Hao Z L. Study on preparation of CHC by high performance liquid chromatography[D](2020).

    [16] Li T, Lin Q, Lu X M et al. Analysis of chlorophyll fluorescence parameters and chlorophyll relative content in mulberry leaves with different maturity[J]. Newsletter of Sericultural Science, 42, 1-13(2022).

    [17] Wang L, Lu Y L, Bai Y L. Research progress on nitrogen nutrition diagnosis method based on SPAD for main grain crops[J]. Journal of Plant Nutrition and Fertilizers, 28, 546-554(2022).

    [18] Yao J P. Microwave photonics[J]. Journal of Lightwave Technology, 27, 314-335(2009).

    [19] Yao J P. Arbitrary waveform generation[J]. Nature Photonics, 4, 79-80(2010).

    [20] Zou X H, Bai W L, Chen W et al. Microwave photonics for featured applications in high-speed railways: communications, detection, and sensing[J]. Journal of Lightwave Technology, 36, 4337-4346(2018).

    [21] Sun L C, Li J Y, Jia Q Q et al. Microring-based response-switchable microwave photonic filter[J]. Laser & Optoelectronics Progress, 60, 0913001(2023).

    [22] Xu J, Jiang Y, Zhou Z Y et al. Return-to-zero/nonreturn-to-zero signal data format conversion based on microwave photonic filter[J]. Chinese Journal of Lasers, 39, 0905008(2012).

    [23] Xu Y M, Pan W, Lu B et al. Multi-stopband microwave photonic filter based on stimulated Brillouin scattering[J]. Chinese Journal of Lasers, 45, 1106004(2018).

    [24] Zhang Z P, Niu X C, Huang J et al. High-performance microwave photonic filter based on fiber ring resonator[J]. Acta Optica Sinica, 40, 2106001(2020).

    [25] Zhu C, Huang J. Microwave-photonic optical fiber interferometers for refractive index sensing with high sensitivity and a tunable dynamic range[J]. Optics Letters, 46, 2180-2183(2021).

    [26] Zhu Y S, Gui L, Zhu Y X. Temperature sensing for wavelength demodulation based on recognition by maximum intensity of radio frequency[J]. Acta Optica Sinica, 39, 0728003(2019).

    Qiankun Li, Meiqi Ding, Lin Gui, Xiaoxuan Lian, Min Qian. Chlorophyll Detection Based on Radio Frequency Intensity of a Microwave Photonic Filter[J]. Chinese Journal of Lasers, 2023, 50(21): 2107403
    Download Citation