• Chinese Journal of Lasers
  • Vol. 46, Issue 12, 1202002 (2019)
Xiujuan Chen1、2, Guorui Zhao2、**, Dongdong Dong2, Wenyou Ma2, Yongjuan Hu1, and Min Liu2、*
Author Affiliations
  • 1School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
  • 2Key Lab of Guangdong for Modern Surface Engineering Technology, Guangdong Institute of New Materials,Guangzhou, Guangdong 510651, China
  • show less
    DOI: 10.3788/CJL201946.1202002 Cite this Article Set citation alerts
    Xiujuan Chen, Guorui Zhao, Dongdong Dong, Wenyou Ma, Yongjuan Hu, Min Liu. Microstructure and Mechanical Properties of Inconel625 Superalloy Fabricated by Selective Laser Melting[J]. Chinese Journal of Lasers, 2019, 46(12): 1202002 Copy Citation Text show less
    References

    [1] Cai H P. Study on properties of Inconel 625 alloy under high temperature and hot corrosion environment[D]. Lanzhou: Lanzhou University of Technology(2018).

    [2] Wang T J, Fan H, Zhang B Q et al[J]. Nickel-based superalloy for key components of ultra-supercritical steam turbine operating above 700 ℃ Dongfang Turbine, 2012, 46-53.

    [3] Wang J Z, Li K Y, Liu A J et al. Microstructure and hardness of hot rolled Inconel 625 alloy after heat treatment[J]. Heat Treatment of Metals, 43, 96-100(2018).

    [4] Liu E L, Liu X, Zhao L G et al. Oxidation resistance of tool material used for cutting Inconel 625[J]. Rare Metal Materials and Engineering, 47, 2192-2197(2018).

    [5] Li K, Hu X J[J]. Comparative study on the cutting performance of Inconel 625 with different tools Manufacturing Technology & Machine Tool, 2016, 107-110.

    [6] Lü H, Yang Z B, Wang X et al. Microstructures and tensile properties of GH4099 alloy fabricated by laser additive manufacturing after heat treatment[J]. Chinese Journal of Lasers, 45, 1002003(2018).

    [7] Cozar R, Rouby M, Mayonobe B et al. Mechanical properties, corrosion resistance and microstructure of both regular and titanium hardened 625 alloys[J]. Superalloys, 718, 423-436(1991).

    [8] Tian Y, Tomus D, Rometsch P et al. Influences of processing parameters on surface roughness of Hastelloy X produced by selective laser melting[J]. Additive Manufacturing, 13, 103-112(2017). http://www.sciencedirect.com/science/article/pii/S221486041630286X

    [9] Zhang J L, Song B, Wei Q S et al. A review of selective laser melting of aluminum alloys: processing, microstructure, property and developing trends[J]. Journal of Materials Science & Technology, 35, 270-284(2019). http://www.cqvip.com/QK/84252X/20192/7001648877.html

    [10] Wang T. Unidirectional solidification behavior of Inconel 625 superalloy under linear electromagnetic stirring[D]. Shenyang: Northeastern University(2016).

    [11] Ivanov D, Travyanov A, Petrovskiy P et al. Evolution of structure and properties of the nickel-based alloy EP718 after the SLM growth and after different types of heat and mechanical treatment[J]. Additive Manufacturing, 18, 269-275(2017).

    [12] Prabhakar P, Sames W J, Dehoff R et al. Computational modeling of residual stress formation during the electron beam melting process for Inconel 718[J]. Additive Manufacturing, 7, 83-91(2015). http://www.sciencedirect.com/science/article/pii/S2214860415000160

    [13] Zong X W, Gao Q, Zhou H Z et al. Effects of bulk laser energy density on anisotropy of selective laser sintered 316L stainless steel[J]. Chinese Journal of Lasers, 46, 0502003(2019).

    [14] Jia Q B, Gu D D. Selective laser melting additive manufacturing of Inconel 718 superalloy parts: densification, microstructure and properties[J]. Journal of Alloys and Compounds, 585, 713-721(2014). http://www.sciencedirect.com/science/article/pii/S0925838813023451

    [15] Koutiri I, Pessard E, Peyre P et al. Influence of SLM process parameters on the surface finish, porosity rate and fatigue behavior of as-built Inconel 625 parts[J]. Journal of Materials Processing Technology, 255, 536-546(2018).

    [16] Sadowski M, Ladani L, Brindley W et al. Optimizing quality of additively manufactured Inconel 718 using powder bed laser melting process[J]. Additive Manufacturing, 11, 60-70(2016). http://www.sciencedirect.com/science/article/pii/S2214860416300483

    [17] Anam M A, Pal D, Stucker B. Modeling and experimental validation of nickel-based super alloy (Inconel 625) made using selective laser melting. [C]∥Solid Freeform Fabrication (SFF) Symposium, August 12-14, 2013, Austin, TX, United States. [S.l.: s.n.], 463-473(2013).

    [18] Zhou Y H, Zhang Z H, Wang Y P et al. Selective laser melting of typical metallic materials: an effective process prediction model developed by energy absorption and consumption analysis[J]. Additive Manufacturing, 25, 204-217(2019).

    [19] Wei P, Wei Z Y, Chen Z et al. The AlSi10Mg samples produced by selective laser melting: single track, densification, microstructure and mechanical behavior[J]. Applied Surface Science, 408, 38-50(2017). http://www.sciencedirect.com/science/article/pii/S0169433217305883

    [20] Liu T T, Zhang C D, Liao W H et al. Experimental analysis of pool behavior in overhang structure fabricated by selective laser melting[J]. Chinese Journal of Lasers, 43, 1202004(2016).

    [21] Carter L N, Martin C, Withers P J et al. The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy[J]. Journal of Alloys and Compounds, 615, 338-347(2014). http://www.sciencedirect.com/science/article/pii/S092583881401528X

    [22] Kruth J P. Froyen L, van Vaerenbergh J, et al. Selective laser melting of iron-based powder[J]. Journal of Materials Processing Technology, 149, 616-622(2004).

    [23] Monroy K, Delgado J, Ciurana J. Study of the pore formation on CoCrMo alloys by selective laser melting manufacturing process[J]. Procedia Engineering, 63, 361-369(2013). http://www.sciencedirect.com/science/article/pii/S1877705813014409

    [24] Bauereiß A, Scharowsky T, Körner C. Defect generation and propagation mechanism during additive manufacturing by selective beam melting[J]. Journal of Materials Processing Technology, 214, 2522-2528(2014).

    [25] Louvis E, Fox P, Sutcliffe C J. Selective laser melting of aluminium components[J]. Journal of Materials Processing Technology, 211, 275-284(2011).

    [26] Olakanmi E O. Selective laser sintering/melting (SLS/SLM) of pure Al, Al-Mg, and Al-Si powders: effect of processing conditions and powder properties[J]. Journal of Materials Processing Technology, 213, 1387-1405(2013). http://www.sciencedirect.com/science/article/pii/S092401361300099X

    [27] Harrison N J, Todd I, Mumtaz K. Reduction of micro-cracking in nickel superalloys processed by selective laser melting: a fundamental alloy design approach[J]. Acta Materialia, 94, 59-68(2015). http://www.sciencedirect.com/science/article/pii/S1359645415002876

    [28] Ghosh S, Ofori-Opoku N, Guyer J E. Simulation and analysis of γ-Ni cellular growth during laser powder deposition of Ni-based superalloys[J]. Computational Materials Science, 144, 256-264(2018). http://arxiv.org/abs/1707.05732

    [29] Schneider J, Lund B, Fullen M. Effect of heat treatment variations on the mechanical properties of Inconel 718 selective laser melted specimens[J]. Additive Manufacturing, 21, 248-254(2018). http://www.sciencedirect.com/science/article/pii/S2214860417306218

    [30] Sing S L, Yeong W Y, Wiria F E. Selective laser melting of titanium alloy with 50 wt% tantalum: microstructure and mechanical properties[J]. Journal of Alloys and Compounds, 660, 461-470(2016).

    [31] Criales L E, Arısoy Y M, Lane B et al. Laser powder bed fusion of nickel alloy 625: experimental investigations of effects of process parameters on melt pool size and shape with spatter analysis[J]. International Journal of Machine Tools and Manufacture, 121, 22-36(2017). http://www.sciencedirect.com/science/article/pii/S0890695516303108

    [32] Tan C L, Zhou K S, Ma W Y et al. Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel[J]. Materials & Design, 134, 23-34(2017). http://www.sciencedirect.com/science/article/pii/S0264127517307724

    [33] Basak A, Das S. Microstructure of nickel-base superalloy MAR-M247 additively manufactured through scanning laser epitaxy (SLE)[J]. Journal of Alloys and Compounds, 705, 806-816(2017). http://www.sciencedirect.com/science/article/pii/S0925838817304280

    [34] Cai Y F, Sui Y, Zhu Z Y et al. Heat treatment of ultra-low iron Inconel 625 alloy[J]. Heat Treatment of Metals, 43, 175-181(2018).

    [35] Huang J C, Yao R G, Yao S W. Precipitation behavior of nickel-base alloy 625 and the related factors[J]. Development and Application of Materials, 31, 87-91(2016).

    [36] Wang Z M, Guan K, Gao M et al. The microstructure and mechanical properties of deposited-IN718 by selective laser melting[J]. Journal of Alloys and Compounds, 513, 518-523(2012). http://www.sciencedirect.com/science/article/pii/S0925838811020767

    [37] Yu Y Q, Ju H, Lin C X et al. Property of stainless steel plates by laser welding with powder filling[J]. Laser & Optoelectronics Progress, 54, 121402(2017).

    [38] Srinivasan R, Sun C N, Zhang B C et al. Mechanical properties and microstructures of as printed and heat treated samples of selective laser melted IN625 alloy powder[J]. MATEC Web of Conferences, 30, 02002(2015). http://www.matec-conferences.org/articles/matecconf/abs/2015/11/matecconf_icmset2015_02002/matecconf_icmset2015_02002.html

    Xiujuan Chen, Guorui Zhao, Dongdong Dong, Wenyou Ma, Yongjuan Hu, Min Liu. Microstructure and Mechanical Properties of Inconel625 Superalloy Fabricated by Selective Laser Melting[J]. Chinese Journal of Lasers, 2019, 46(12): 1202002
    Download Citation