• Chinese Optics Letters
  • Vol. 19, Issue 2, 021301 (2021)
Chi Pang1, Rang Li1、2, Ziqi Li1, Ningning Dong3, Jun Wang3, Feng Ren4, and Feng Chen1、*
Author Affiliations
  • 1School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
  • 2Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
  • 3Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 4Department of Physics, Center for Ion Beam Application and Center for Electron Microscopy, Wuhan University, Wuhan 430072, China
  • show less
    DOI: 10.3788/COL202119.021301 Cite this Article Set citation alerts
    Chi Pang, Rang Li, Ziqi Li, Ningning Dong, Jun Wang, Feng Ren, Feng Chen. Multi-gigahertz laser generation based on monolithic ridge waveguide and embedded copper nanoparticles[J]. Chinese Optics Letters, 2021, 19(2): 021301 Copy Citation Text show less
    References

    [1] J. J. He, W. K. Chan, X. Cheng, M. L. Tse, C. Lu, P. K. Wai, S. Savovic, H. Y. Tam. Experimental and theoretical investigation of the polymer optical fiber random laser with resonant feedback. Adv. Opt. Mater., 6, 1701187(2018).

    [2] W. Xie, T. Stöferle, G. Rainò, T. Aubert, S. Bisschop, Y. Zhu, R. F. Mahrt, P. Geiregat, E. Brainis, Z. Hens, D. V. Thourhout. On-chip integrated quantum-dot-silicon-nitride microdisk lasers. Adv. Mater., 29, 1604866(2017).

    [3] A. Fuerbach, G. Bharathan, M. Ams. Grating inscription into fluoride fibers: a review. IEEE Photon. J., 11, 7103811(2019).

    [4] A. Fuerbach, S. Antipov, R. Williams, M. Ams, M. Withford. Femtosecond direct-writing of low-loss fibre Bragg gratings with arbitrary reflection and dispersion profiles. 2015 17th International Conference on Transparent Optical Networks, 1(2015).

    [5] Y. Jia, F. Chen. Compact solid-state waveguide lasers operating in the pulsed regime: a review. Chin. Opt. Lett., 17, 012302(2019).

    [6] E. Kifle, P. Loiko, C. Romero, J. R. V. De Aldana, A. Rodenas, V. Zakharov, A. Veniaminov, M. Aguilo, F. Diaz, U. Griebner, V. Petrov, X. Mateos. Femtosecond-laser-written Ho:KGd(WO4)2 waveguide laser at 2.1 µm. Opt. Lett., 44, 1738(2019).

    [7] C. Khurmi, N. B. Hébert, W. Q. Zhang, S. Afshar, V. G. Chen, J. Genest, T. M. Monro, D. G. Lancaster. Ultrafast pulse generation in a mode-locked erbium chip waveguide laser. Opt. Express, 24, 27177(2016).

    [8] F. Piantedosi, G. Y. Chen, T. M. Monro, D. G. Lancaster. Widely tunable, high slope efficiency waveguide lasers in a Yb-doped glass chip operating at 1 µm. Opt. Lett., 43, 1902(2018).

    [9] B. Yao, X. Li, T. Dai, Z. Cui, S. Bai, H. Yang, J. Li, Y. Ju, L. Ge, Y. Wang, Y. Pan. Diode-pumped tape casting planar waveguide YAG/Tm:YAG/YAG ceramic laser at 2013.76 nm. Opt. Lett., 41, 254(2016).

    [10] S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, D. J. Blumenthal. Sub-hertz fundamental linewidth photonic integrated Brillouin laser. Nat. Photon., 13, 60(2019).

    [11] T. Calmano, A. G. Paschke, S. Müller, C. Kränkel, G. Huber. Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription. Opt. Express, 21, 25501(2013).

    [12] H. Pan, L. Cao, H. Chu, Y. Wang, S. Zhao, Y. Li, N. Qi, Z. Sun, X. Jiang, R. Wang, H. Zhang, D. Li. Broadband nonlinear optical response of InSe nanosheets for the pulse generation from 1 to 2 µm. ACS Appl. Mater. Inter., 11, 48281(2019).

    [13] C. Pang, R. Li, Y. Zhang, Z. Li, N. Dong, L. Wu, H. Yu, J. Wang, F. Ren, F. Chen. Tailoring optical nonlinearities of LiNbO3 crystals by plasmonic silver nanoparticles for broadband saturable absorbers. Opt. Express, 26, 1276(2018).

    [14] X. Tian, R. Wei, M. Liu, C. Zhu, Z. Luo, F. Wang, J. Qiu. Ultrafast saturable absorption in TiS2 induced by non-equilibrium electrons and the generation of a femtosecond mode-locked laser. Nanoscale, 10, 9608(2018).

    [15] W. Zhao, G. W. Chen, W. L. Li, G. M. Wang, C. Zeng. All-fiber saturable absorbers for ultrafast fiber lasers. IEEE Photon. J., 11, 7104019(2019).

    [16] J. Bogusławski, Y. D. Wang, H. Xue, X. X. Yang, D. Mao, X. T. Gan, Z. Y. Ren, J. L. Zhao, Q. Dai, G. Sobon, J. Sotor, Z. P. Sun. Graphene actively mode-locked lasers. Adv. Funct. Mater., 28, 1801539(2018).

    [17] C. Ma, C. Wang, B. Gao, J. Adams, G. Wu, H. Zhang. Recent progress in ultrafast lasers based on 2D materials as a saturable absorber. Appl. Phys. Rev., 6, 041304(2019).

    [18] M. Zhang, Q. Wu, F. Zhang, L. Chen, X. Jin, Y. Hu, Z. Zheng, H. Zhang. 2D black phosphorus saturable absorbers for ultrafast photonics. Adv. Opt. Mater., 7, 1800224(2019).

    [19] M. Tuo, C. Xu, H. Mu, X. Bao, Y. Wang, S. Xiao, W. Ma, L. Li, D. Tang, H. Zhang, M. Premaratne, B. Sun, H. M. Cheng, S. Li, W. Ren, Q. Bao. Ultrathin 2D transition metal carbides for ultrafast pulsed fiber lasers. ACS Photonics, 5, 1808(2018).

    [20] B. Guo. 2D noncarbon materials-based nonlinear optical devices for ultrafast photonics. Chin. Opt. Lett., 16, 020004(2018).

    [21] T. Tang, F. Zhang, M. Wang, Z. Wang, X. Xu. Two-dimensional tellurene nanosheets as saturable absorber of passively Q-switched Nd:YAG solid-state laser. Chin. Opt. Lett., 18, 041403(2020).

    [22] J. Zou, Q. Ruan, X. Zhang, B. Xu, Z. Cai, Z. Luo. Visible-wavelength pulsed lasers with low-dimensional saturable absorbers. Nanophotonics, 9, 2273(2020).

    [23] R. Wei, X. Tian, Y. Lupeng, D. Yang, M. Zhijun, G. Hai, J. Qiu. Ultrafast and large optical nonlinearity of TiSe2 saturable absorber in the 2 µm wavelength region. Nanoscale, 11, 22277(2019).

    [24] C. Pang, R. Li, Z. Li, N. Dong, C. Cheng, W. Nie, R. Böttger, S. Zhou, J. Wang, F. Chen. Lithium niobate crystal with embedded au nanoparticles: a new saturable absorber for efficient mode-locking of ultrafast laser pulses at 1 µm. Adv. Opt. Mater., 6, 1800357(2018).

    [25] Y. Wang, Y. Niu, G. Wang, Y. Sun, C. Liu. Enhanced nonlinear optical properties of LiNbO3 crystal embedded with CuZn alloy nanoparticles by ion implantation. J. Alloy. Compd., 778, 691(2019).

    [26] Y. Zhang, D. Lu, H. Yu, H. Zhang. Low-dimensional saturable absorbers in the visible spectral region. Adv. Opt. Mater., 7, 1800357(2019).

    [27] R. Li, C. Pang, Z. Li, F. Chen. Plasmonic nanoparticles in dielectrics synthesized by ion beams: optical properties and photonic applications. Adv. Opt. Mater., 8, 1902087(2020).

    [28] D. Mao, X. Cui, Z. He, H. Lu, W. Zhang, L. Wang, Q. Zhuang, S. Hua, T. Mei, J. Zhao. Broadband polarization-insensitive saturable absorption of Fe2O3 nanoparticles. Nanoscale, 10, 21219(2018).

    [29] X. Liu, Q. Guo, J. Qiu. Emerging low-dimensional materials for nonlinear optics and ultrafast photonics. Adv. Mater., 29, 1605886(2017).

    [30] Y. Zhang, Y. Wang. Nonlinear optical properties of metal nanoparticles: a review. RSC Adv., 7, 45129(2017).

    [31] B. Y. Guan, L. Yu, X. Wang, S. Y. Song, X. W. Lou. Formation of onion-like NiCo2S4 particles via sequential ion-exchange for hybrid supercapacitors. Adv. Mater., 29, 1605051(2017).

    [32] A. L. Stepanov. Nonlinear optical properties of implanted metal nanoparticles in various transparent matrixes: a review. Rev. Adv. Mater. Sci., 27, 115(2011).

    [33] W. Wesch, E. Wendler. Ion Beam Modification of Solids(2016).

    [34] F. Chen, H. Amekura, Y. Jia. Ion Irradiation of Dielectrics for Photonic Applications(2020).

    [35] R. Li, C. Pang, Z. Li, N. Dong, J. Wang, F. Ren, S. Akhmadaliev, S. Zhou, F. Chen. Monolithic waveguide laser mode-locked by embedded Ag nanoparticles operating at 1 µm. Nanophotonics, 8, 859(2019).

    [36] J. Hu, P. Liu, L. Chen. Comparison of surface plasmon resonance responses to dry/wet air for Ag, Cu, and Au/SiO2. Appl. Opt., 51, 1357(2012).

    [37] G. Mie. Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions. Ann. Phys., 330, 377(1908).

    [38] M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. Van Stryland. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Elect., 26, 760(1990).

    [39] K. Y. Bliokh, A. Aiello. Goos–Hanchen and Imbert–Fedorov beam shifts: an overview. J. Opt., 15, 014001(2013).

    CLP Journals

    [1] Jinhua Zhao, Xueshuai Jiao, Yingying Ren, Jinjun Gu, Sumei Wang, Mingyang Bu, Lei Wang. Lithium niobate planar and ridge waveguides fabricated by 3 MeV oxygen ion implantation and precise diamond dicing[J]. Chinese Optics Letters, 2021, 19(6): 060009

    Data from CrossRef

    [1] Chi Pang, Rang Li, Ziqi Li, Xiaoli Sun, Ningning Dong, Jun Wang, Shengqiang Zhou, Feng Chen. Q-switched mode-locked laser generation by Au nanoparticles embedded in LiTaO3 crystals. Optical Materials, 122, 111714(2021).

    Chi Pang, Rang Li, Ziqi Li, Ningning Dong, Jun Wang, Feng Ren, Feng Chen. Multi-gigahertz laser generation based on monolithic ridge waveguide and embedded copper nanoparticles[J]. Chinese Optics Letters, 2021, 19(2): 021301
    Download Citation