[1] LI X Y, CHENG R J, SHI H J, et al.. A simple highly sensitive and selective aptamer-based colorimetric sensor for environmental toxins microcystin-LR in water samples[J]. Journal of Hazardous Materials, 2015, 304(1): 474-480.
[2] WANG B, CHEN Y F, WU Y Y, et al.. Aptamer induced assembly of fluorescent nitrogen-doped carbon dots on gold nanoparticles for sensitive detection of AFB1[J]. Biosensors and Bioelectronics, 2016, 78: 23-30.
[3] HE Y, LIN Y, TANG H, et al.. A graphene oxide-based fluorescent aptasensor for the turn-on detection of epithelial tumor marker mucin 1[J]. Nanoscale, 2012, 4: 2054-2059.
[4] MA K , ZHANG F , SAYYADI N , et al.. "Turn-on" fluorescent aptasensor based on AIEgen labeling for the localization of IFN-γ in live cells[J]. ACS Sensors, 2018,3(2): 7b00720.
[5] KEEFE A D, PAI S, ELLINGTON A. Aptamers as therapeutics[J]. Nature Reviews Drug Discovery, 2010, 9(7): 537-550.
[6] RUTKOWSKA A, FREEDMAN K, SKALKOWSKA J, et al.. Electrodeposition and bipolar effects in metallized nanopores and their use in the detection of insulin[J]. Analytical Chemistry, 2015, 87(4): 2337-2344.
[7] ROYCHOUDHURY A, BASU S, JHA S K. Dopamine biosensor based on surface functionalized nanostructured nickel oxide platform[J]. Biosensors and Bioelectronics, 2016, 84: 72-81.
[8] KHOSHFETRAT S M, BAGHERI H, MEHRGARDI M A. Visual electrochemiluminescence biosensing of aflatoxin M1 based on luminol-functionalized, silver nanoparticle-decorated graphene oxide[J]. Biosensors and Bioelectronics, 2018, 100: 382-388.
[10] GAO D, LI H F, WANG N J, et al.. Evaluation of the absorption of methotrexate on cells and its cytotoxicity assay by using an integrated microfluidic device coupled to a mass spectrometer[J]. Analytical Chemistry, 2012, 84(21) : 121022155012001.
[12] DONG J, ZHANG Z, ZHENG H, et al.. Erratum to: recent progress on plasmon-enhanced fluorescence[J]. Nanophotonics, 2017, 6(2): 472-490.
[13] WANG Y, LI H, XU D K. Aptamers-based sandwich assay for silver-enhanced fluorescence multiplex detection[J]. Analytica Chimica Acta, 2015, 905: 149-155.
[14] NIE Y H, TENG Y J, LI P, et al.. Label-free aptamer-based sensor for specific detection of malathion residues by surface-enhanced Raman scattering[J]. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, 2017, 191: 271-276.
[15] YE S J, WU Y Y, ZHAI X M, et al.. Asymmetric signal amplication for simultaneous SERS detection of multiple cancer markers with significantly different levels[J]. Analytical Chemistry, 2015, 87(16) : 8242-8249.
[17] ASSELIN J, LEGROS P, GRGOIRE A, et al.. Correlating metal-enhanced fluorescence and structural properties in Ag@SiO_2 core-shell nanoparticles[J]. Plasmonics, 2016, 11(5): 1369-1376.
[18] CHEN CH, ZHANG L. Distance control surface-enhanced fluorescence properties of nanoporous gold[J]. Journal of University of Shanghai for Science and Technology, 2017, 39(1): 58-62. (in Chinese)
[19] LI X, WANG Y, LUO J, AI S. Sensitive detection of adenosine triphosphate by exonuclease III-assisted cyclic amplification coupled with surface plasmon resonance enhanced fluorescence based on nanopore[J]. Sensors & Actuators B: Chemical, 2016, 228: 509-514.
[20] MA H J, LI A H, XU Y H, et al.. Preparation of pH-responsive AgNPs/polymer nanohybrids with controllable metal-enhanced fluorescence behavior[J]. European Polymer Journal, 2015, 72: 212-221.
[21] MENG F B, XU H, LAN W, et al.. Progress in metal enhanced fluorescence in aqueous solution[J]. Chemistry, 2015, 78(6): 489-496. (in Chinese)
[22] L G W, SHEN H M, CHENG Y Q, et al.. Advances in localized surface plasmon enhanced fluorescence[J]. Chinese Science Bulletin, 2015, 60(33): 3169-3179. (in Chinese)