• Chinese Journal of Lasers
  • Vol. 45, Issue 3, 307007 (2018)
Lu Jiao1, Zhu Shanshan1, Cui Xiaoyu1, Chen Shuo1、*, and Yao Yudong1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/cjl201845.0307007 Cite this Article Set citation alerts
    Lu Jiao, Zhu Shanshan, Cui Xiaoyu, Chen Shuo, Yao Yudong. Raman Spectroscopic Imaging Technology and Its Biomedical Applications[J]. Chinese Journal of Lasers, 2018, 45(3): 307007 Copy Citation Text show less
    References

    [1] Raman C V. A change of wave-length in light scattering[J]. Nature, 1928, 121(3051): 619.

    [2] Asher S A. UV resonance Raman spectroscopy for analytical, physical, and biophysical chemistry: Part 2[J]. Analytical Chemistry, 1993, 65(4): 201A-210A.

    [4] Tunnell J W, Haka A S, McGee S A, et al. Diagnostic tissue spectroscopy and its applications to gastrointestinal endoscopy[J]. Techniques in Gastrointestinal Endoscopy, 2003, 5(2): 65-73.

    [5] Xu B, Lin M M, Yao H L, et al. Measurement of hemoglobin concentration of single red blood cell using Raman spectroscopy[J]. Chinese Journal of Lasers, 2016, 43(1): 0115003.

    [6] Zheng J W, Yang T W. Classification method of biological tissues based on Raman spectrum features[J]. Laser & Optoelectronics Progress, 2017, 54(5): 053001.

    [7] Gong X J, Wang G, Ou Z H, et al. The application of hyperspectral imaging technique in biomedicine[J]. Acta Laser Biology Sinica, 2016, 25(4): 289-294.

    [8] Zhu X J, Song X L, Wang D F, et al. Introduction of fluorescence molecular imaging technology and its development[J]. Chinese Journal of Medical Instrumentation, 2008, 32(1): 1-5.

    [9] Tan B, Hu J M, Yang P, et al. Photoacoustic tomography imaging: An emerging detection way[J]. Laser & Optoelectronics Progress, 2013, 50(4): 040005.

    [10] Dhakal S, Chao K L, Qin J W, et al. Identification and evaluation of composition in food powder using point-scan Raman spectral imaging[J]. Applied Sciences, 2017, 7(1): 7010001.

    [11] Qin J W, Kim M S, Chao K L, et al. Line-scan Raman imaging and spectroscopy platform for surface and subsurface evaluation of food safety and quality[J]. Journal of Food Engineering, 2017, 198: 17-27.

    [12] Pappas D, Smith B W,Winefordner J D. Raman imaging for two-dimensional chemical analysis[J]. Applied Spectroscopy Reviews, 2000, 35(1/2): 1-23.

    [13] Samuel A Z, Yabumoto S, Kawamura K, et al. Rapid microstructure characterization of polymer thin films with 2D-array multifocus Raman microspectroscopy[J]. Analyst, 2015, 140(6): 1847-1851.

    [14] Chen S, Ong Y H, Liu Q. Fast reconstruction of Raman spectra from narrow-band measurements based on Wiener estimation[C]. SPIE, 2012, 8553: 85531R.

    [15] Lohumi S, Kim M S, Qin J W, et al. Raman imaging from microscopy to macroscopy: Quality and safety control of biological materials[J]. Trends in Analytical Chemistry, 2017, 93: 183-198.

    [16] Opilik L, Schmid T, Zenobi R. Modern Raman imaging: Vibrational spectroscopy on the micrometer and nanometer scales[J]. Annual Review of Analytical Chemistry, 2013, 6(1): 379-398.

    [17] Bowden M, Gardiner D J, Rice G, et al. Line-scanned micro Raman spectroscopy using a cooled CCD imaging detector[J]. Journal of Raman Spectroscopy, 1990, 21(1): 37-41.

    [18] Ode T. Nanophoton-the latest laser microscope manufacturing company[J]. The Review of Laser Engineering, 2006, 34(7): 519-521.

    [19] Stewart S, Priore R J, Nelson M P, et al. Raman imaging[J]. Annual Review of Analytical Chemistry, 2012, 5(1): 337-360.

    [20] Papour A, Kwak J H, Taylor Z, et al. Wide-field Raman imaging for bone detection in tissue[J]. Biomedical Optics Express, 2015, 6(10): 3892-3897.

    [21] Puppels G J, Grond M, Greve J. Direct imaging Raman microscope based on tunable wavelength excitation and narrow-band emission detection[J]. Applied Spectroscopy, 1993, 47(8): 1256-1267.

    [22] Baronti S, Casini A, Lotti F, et al. Multispectral imaging system for the mapping of pigments in works of art by use of principal-component analysis[J]. Applied Optics, 1998, 37(8): 1299-1309.

    [23] Turner J F,Treado P J. LCTF Raman chemical imaging in the near infrared[C]. SPIE, 1997, 3061: 280-283.

    [24] Morris H R, Hoyt C C, Miller P, et al. Liquid crystal tunable filter Raman chemical imaging[J]. Applied Spectroscopy, 1996, 50(6): 805-811.

    [25] Schaeberle M D, Tuschel D D, Treado P J. Raman chemical imaging of microcrystallinity in silicon semiconductor devices[J]. Applied Spectroscopy, 2001, 55(3): 257-266.

    [26] Morris H R, Hoyt C C, Treado P J. Imaging spectrometers for fluorescence and Raman microscopy: Acousto-optic and liquid crystal tunable filters[J]. Applied Spectroscopy, 1994, 48(7): 857-866.

    [27] Oshima Y, Sato H, Kajiura-Kobayashi H, et al. Light sheet-excited spontaneous Raman imaging of a living fish by optical sectioning in a wide field Raman microscope[J]. Optics Express, 2012, 20(15): 16195-16204.

    [28] Johnson W R, Wilson D W, Bearman G. All-reflective snapshot hyperspectral imager for ultraviolet and infrared applications[J]. Optics Letters, 2005, 30(12): 1464-1466.

    [29] Schmlzlin E, Moralejo B, Rutowska M, et al. Raman imaging with a fiber-coupled multichannel spectrograph[J]. Sensors, 2014, 14(11): 21968-21980.

    [30] Okuno M, Hamaguchi H. Multifocus confocal Raman microspectroscopy for fast multimode vibrational imaging of living cells[J]. Optics Letters, 2010, 35(24): 4096-4098.

    [31] McCain S T, Gehm M E, Wang Y, et al. Coded aperture Raman spectroscopy for quantitative measurements of ethanol in a tissue phantom[J]. Applied Spectroscopy, 2006, 60(6): 663-671.

    [32] Feng W Y, Rueda H, Fu C, et al. 3D compressive spectral integral imaging[J]. Optics Express, 2016, 24(22): 24859-24871.

    [33] Wei D, Chen S, Ong Y H, et al. Fast wide-field Raman spectroscopic imaging based on simultaneous multi-channel image acquisition and Wiener estimation[J]. Optics Letters, 2016, 41(12): 2783-2786.

    [34] Chen S, Wang G, Cui X Y, et al. Stepwise method based on Wiener estimation for spectral reconstruction in spectroscopic Raman imaging[J]. Optics Express, 2017, 25(2): 1005-1018.

    [35] Chen S, Ong Y H, Lin X Q, et al. Optimization of advanced Wiener estimation methods for Raman reconstruction from narrow-band measurements in the presence of fluorescence background[J]. Biomedical Optics Express, 2015, 6(7): 2633-2648.

    [36] Chen S, Lin X, Yuen C, et al. Recovery of Raman spectra with low signal-to-noise ratio using Wiener estimation[J]. Optics Express, 2014, 22(10): 12102-12114.

    [37] Schlücker S, Schaeberle M D, Huffman S W, et al. Raman microspectroscopy: A comparison of point, line, and wide-field imaging methodologies[J]. Analytical Chemistry, 2003, 75(16): 4312-4318.

    [38] Ramsey J, Ranganathan S, McCreery R L, et al. Performance comparisons of conventional and line-focused surface Raman spectrometers[J]. Applied Spectroscopy, 2001, 55(6): 767-773.

    [39] Chen T, Yu Z L, Zhang X N, et al. Coherent Raman scattering microscopy[J]. Scientia Sinica Chimica, 2012, 42(1): 1-16.

    [40] Zhou M H, Liao C Y, Ren Z Y, et al. Bioimaging technologies based on surface-enhanced Raman spectroscopy and their applications[J]. Chinese Optics, 2013, 6(5): 633-642.

    [41] Cui H, Wang Y, Qiu L R, et al. Confocal Raman image method with maximum likelihood method[J]. Spectroscopy and Spectral Analysis, 2017, 37(5): 1571-1575.

    [42] Movasaghi Z, Rehman S, Rehman I U. Raman spectroscopy of biological tissues[J]. Applied Spectroscopy Reviews, 2007, 42(5): 493-541.

    [43] Zhang L, Henson M J, Sekulic S S. Multivariate data analysis for Raman imaging of a model pharmaceutical tablet[J]. Analytica Chimica Acta, 2005, 545(2): 262-278.

    [44] Bergner N, Bocklitz T, Romeike B F M, et al. Identification of primary tumors of brain metastases by Raman imaging and support vector machines[J]. Chemometrics and Intelligent Laboratory Systems, 2012, 117(6): 224-232.

    [45] Tolstik T, Marquardt C, Matthus C, et al. Discrimination and classification of liver cancer cells and proliferation states by Raman spectroscopic imaging[J]. Analyst, 2014, 139(22): 6036-6043.

    [46] Weng S, Xu X Y, Li J S, et al. Combining deep learning and coherent anti-Stokes Raman scattering imaging for automated differential diagnosis of lung cancer[J]. Journal of Biomedical Optics, 2017, 22(10): 1-10.

    [47] Zhang X, Roeffaers M B J, Basu S, et al. Label-free live-cell imaging of nucleic acids using stimulated Raman scattering microscopy[J]. Chemphyschem, 2012, 13(4): 1054-1059.

    [48] Lu F K, Basu S, Igras V, et al. Label-free DNA imaging in vivo with stimulated Raman scattering microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(37): 11624-11629.

    [49] Meng L J, Ji X L, Li Z D, et al. Mono-hepatocellular carcinoma by Raman mapping[J]. Laser & Optoelectronics Progress, 2011, 48(2): 021703.

    [50] Kang J W, So P T C, Dasari R R, et al. High resolution live cell Raman imaging using subcellular organelle-targeting SERS-sensitive gold nanoparticles with highly narrow intra-nanogap[J]. Nano Letters, 2015, 15(3): 1766-1772.

    [51] Stiebing C, Meyer T, Rimke I, et al. Real-time Raman and SRS imaging of living human macrophages reveals cell-to-cell heterogeneity and dynamics of lipid uptake[J]. Journal of Biophotonics, 2017, 10(9): 1217-1226.

    [52] Kirsch M, Schackert G, Salzer R, et al. Raman spectroscopic imaging for in vivo detection of cerebral brain metastases[J]. Analytical and Bioanalytical Chemistry, 2010, 398(4): 1707-1713.

    [53] Zhou Y, Liu C H, Pu Y, et al. Optical pathology of human brain metastasis of lung cancer using combined resonance Raman and spatial frequency spectroscopies[C]. SPIE, 2016, 9703: 97031R.

    [54] Wang Y C, Li Y, Wu X Y, et al. Research progress of application of Raman imaging technology in detection of brain glioma[J]. Chinese Journal of Clinical Pharmacy, 2016, 25(6): 398-401.

    [55] Koljenovi S, Choo-Smith L P, Bakker Schut T C, et al. Discriminating vital tumor from necrotic tissue in human glioblastoma tissue samples by Raman spectroscopy[J]. Laboratory Investigation, 2002, 82(10): 1265-1277.

    [56] Amharref N, Beljebbar A, Dukic S, et al. Discriminating healthy from tumor and necrosis tissue in rat brain tissue samples by Raman spectral imaging[J]. Biochimica et Biophysica Acta, 2007, 1768(10): 2605-2615.

    [57] Krafft C, Sobottka S B, Schackert G, et al. Raman and infrared spectroscopic mapping of human primary intracranial tumors: A comparative study[J]. Journal of Raman Spectroscopy, 2006, 37(1/2/3): 367-375.

    [58] Freudiger C W, Pfannl R, Orringer D A, et al. Multicolored stain-free histopathology with coherent Raman imaging[J]. Laboratory Investigation, 2012, 92(10): 1492-1502.

    [59] Kast R, Auner G, Yurgelevic S, et al. Identification of regions of normal grey matter and white matter from pathologic glioblastoma and necrosis in frozen sections using Raman imaging[J]. Journal of Neuro-Oncology, 2015, 125(2): 287-295.

    [60] Hartsuiker L, Zeijen N J L, Terstappen L W M M, et al. A comparison of breast cancer tumor cells with varying expression of the Her2/neu receptor by Raman microspectroscopic imaging[J]. Analyst, 2010, 135(12): 3220-3226.

    [61] Brozek-Pluska B, Musial J, Kordek R, et al. Raman spectroscopy and imaging: Applications in human breast cancer diagnosis[J]. Analyst, 2012, 137(16): 3773-3780.

    [62] Lee S, Chon H, Lee J, et al. Rapid and sensitive phenotypic marker detection on breast cancer cells using surface-enhanced Raman scattering (SERS) imaging[J]. Biosensors and Bioelectronics, 2013, 51: 238-243.

    [63] Harmsen S, Huang R, Wall M A, et al. Surface-enhanced resonance Raman scattering nanostars for high-precision cancer imaging[J]. Science Translational Medicine, 2015, 7(271): 271ra7.

    [64] Manciu F S, Ciubuc J D, Parra K, et al. Label-free Raman imaging to monitor breast tumor signatures[J]. Technology in Cancer Research & Treatment, 2017, 16(4): 461-469.

    [65] Schaeberle M D, Kalasinsky V F, Luke J L, et al. Raman chemical imaging: Histopathology of inclusions in human breast tissue[J]. Analytical Chemistry, 1996, 68(11): 1829-1833.

    [66] Maier J, Panza J, Drauch A, et al. Raman molecular imaging of tissue and cell samples using tunable multiconjugate filter[C]. SPIE, 2006, 6380: 638009.

    [67] Yosef H K, Krau S D, Lechtonen T, et al. Noninvasive diagnosis of high-grade urothelial carcinoma in urine by Raman spectral imaging[J]. Analytical Chemistry, 2017, 89(12): 6893-6899.

    [68] Li M, Banerjee S R, Zheng C, et al. Ultrahigh affinity Raman probe for targeted live cell imaging of prostate cancer[J]. Chemical Science, 2016, 7(11): 6779-6785.

    [69] Duindam H J, Vrensen G F, Otto C, et al. New approach to assess the cholesterol distribution in the eye lens: Confocal Raman microspectroscopy and filipin cytochemistry[J]. Journal of Lipid Research, 1995, 36(5): 1139-1146.

    [70] Sijtsema N M, Duindam J J, Puppels G J, et al. Imaging with extrinsic Raman labels[J]. Applied Spectroscopy, 1996, 50(5): 545-551.

    [71] Gellermann W, Ermakov I V, McClane R W, et al. Raman imaging of human macular pigments[J]. Optics Letters, 2002, 27(10): 833-835.

    [72] Ammar D A, Lei T C, Kahook M Y, et al. Imaging the intact mouse cornea using coherent anti-Stokes Raman scattering (CARS)[J]. Investigative Ophthalmology & Visual Science, 2013, 54(8): 5258-5265.

    [73] Kaji Y, Akiyama T, Segawa H, et al. Raman microscopy: A noninvasive method to visualize the localizations of biomolecules in the cornea[J]. Cornea, 2017, 36(s1): 67-71.

    [74] Timlin J A, Carden A, Morris M D, et al. Spatial distribution of phosphate species in mature and newly generated mammalian bone by hyperspectral Raman imaging[J]. Journal of Biomedical Optics, 1999, 4(1): 28-34.

    [75] Crane N J, Morris M D, Ignelzi M A, et al. Raman imaging demonstrates FGF2-induced craniosynostosis in mouse calvaria[J]. Journal of Biomedical Optics, 2005, 10(3): 031119.

    [76] Crane N J, Popescu V, Morris M D, et al. Raman spectroscopic evidence for octacalcium phosphate and other transient mineral species deposited during intramembranous mineralization[J]. Bone, 2006, 39(3): 434-442.

    [77] Chan K L A, Zhang G J, Tomic-Canic M, et al. A coordinated approach to cutaneous wound healing: Vibrational microscopy and molecular biology[J]. Journal of Cellular and Molecular Medicine, 2008, 12(5b): 2145-2154.

    [78] Braiman-Wiksman L, Solomonik I, Spira R, et al. Novel insights into wound healing sequence of events[J]. Toxicologic Pathology, 2007, 35(6): 767-779.

    [79] Gniadecka M, Wulf H C, Mortensen N N, et al. Diagnosis of basal cell carcinoma by Raman spectroscopy[J]. Journal of Raman Spectroscopy, 1997, 28(2/3): 125-129.

    [80] Nijssen A, Bakker Schut T C, Heule F, et al. Discriminating basal cell carcinoma from its surrounding tissue by Raman spectroscopy[J]. Journal of Investigative Dermatology, 2002, 119(1): 64-69.

    [81] Piredda P, Berning M, Boukamp P, et al. Subcellular Raman microspectroscopy imaging of nucleic acids and tryptophan for distinction of normal human skin cells and tumorigenic keratinocytes[J]. Analytical Chemistry, 2015, 87(13): 6778-6785.

    [82] Saar B G, Contreras-Rojas L R,Xie X S, et al. Imaging drug delivery to skin with stimulated Raman scattering microscopy[J]. Molecular Pharmaceutics, 2011, 8(3): 969-975.

    [83] Smith G P S, Holroyd S E, Reid D C W, et al. Raman imaging processed cheese and its components[J]. Journal of Raman Spectroscopy, 2017, 48(3): 374-383.

    [84] Tan Z, Lou T T, Huang Z X, et al. Single-drop Raman imaging exposes the trace contaminants in milk[J]. Journal of Agricultural and Food Chemistry, 2017, 65(30): 6274-6281.

    [85] Brodard P, Roth S, Vorlet O. Non-destructive localization and identification of active pharmaceutical compounds by Raman chemical imaging[J]. Chimia, 2013, 67(12/13): 923-924.

    [86] Bhogadi R K, Satyanarayana A, Rao N S, et al. Simple, fast and economic way for estimation of calcipotriene crystal size and particle distribution in its drug product. Raman microscope particle size verses pre-calci content-an approximation by HPLC analysis[J]. Analytical Chemistry Letters, 2017, 7(1): 1-10.

    [87] Batonneau Y, Sobanska S, Laureyns J, et al. Confocal microprobe Raman imaging of urban tropospheric aerosol particles[J]. Environmental Science & Technology, 2006, 40(4): 1300-1306.

    [88] Colares C J G, Pastore T C M, Coradin V T R, et al. Exploratory analysis of the distribution of lignin and cellulose in woods by Raman imaging and chemometrics[J]. Journal of the Brazilian Chemical Society, 2015, 26(6): 1297-1305.

    Lu Jiao, Zhu Shanshan, Cui Xiaoyu, Chen Shuo, Yao Yudong. Raman Spectroscopic Imaging Technology and Its Biomedical Applications[J]. Chinese Journal of Lasers, 2018, 45(3): 307007
    Download Citation