• Frontiers of Optoelectronics
  • Vol. 7, Issue 1, 1 (2014)
Zhuang ZHAO*, Sophie BOUCHOULE, Jean-Christophe HARMAND, Gilles PATRIARCHE, Guy AUBIN, and Jean-Louis OUDAR
Author Affiliations
  • Laboratoire de Photonique et de Nanostructures (LPN), CNRS, Marcoussis, France
  • show less
    DOI: 10.1007/s12200-014-0387-5 Cite this Article
    Zhuang ZHAO, Sophie BOUCHOULE, Jean-Christophe HARMAND, Gilles PATRIARCHE, Guy AUBIN, Jean-Louis OUDAR. Recent advances in development of vertical-cavity based short pulse source at 1.55 μm[J]. Frontiers of Optoelectronics, 2014, 7(1): 1 Copy Citation Text show less
    References

    [1] Mollenauer L F, Mamyshev P V, Gripp J, Neubelt M J, Mamysheva N, Grüner-Nielsen L, Veng T. Demonstration of massive wavelength-division multiplexing over transoceanic distances by use of dispersion-managed solitons. Optics Letters, 2000, 25(10): 704-706.

    [2] Miller D A B. Rationale and challenges for optical interconnects to electronic chips. Proceedings of the IEEE, 2000, 88(6): 728-749

    [3] Mule A V, Glytsis E N, Gaylord T K, Meindl J D. Electrical and optical clock distribution networks for gigascale microprocessors. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2002, 10(5): 582-594

    [4] Aisawa S, Sakamoto T, Fukui M, Kani J, Jinno M, Oguchi K. Ultrawideband, long distance WDM demonstration of 1 Tbit/s (50×20 Gbit/s) 600 km transmission using 1550 and 1580 nm wavelength bands. Electronics Letters, 1998, 34(11): 1127-1128

    [5] Keeler G A, Nelson B E, Agarwal D, Debaes C, Helman N C, Bhatnagar A, Miller D A B. The benefits of ultrashort optical pulses in optically interconnected systems. IEEE Journal on Selected Topics in Quantum Electronics, 2003, 9(2): 477-485

    [6] Juodawlkis PW, Twichell J C, Betts G E, Hargreaves J J, Younger R D, Wasserman J L, O’Donnell F J, Ray K G, Williamson R C. Optically sampled analog-to-digital converters. IEEE Transactions on Microwave Theory and Techniques, 2001, 49(10): 1840-1853

    [7] Lau K Y, Ury I, Yariv A. Passive and active mode locking of a semiconductor laser without an external cavity. Applied Physics Letters, 1985, 46(12): 1117-1119

    [8] Hou L, Haji M, Akbar J, Qiu B, Bryce A C. Low divergence angle and low jitter 40 GHz AlGaInAs/InP 1.55 μm mode-locked lasers. Optics Letters, 2011, 36(6): 966-968

    [9] Merghem K, Akrout A, Martinez A, Aubin G, Ramdane A, Lelarge F, Duan G H. Pulse generation at 346 GHz using a passively mode locked quantum-dash-based laser at 1.55 μm. Applied Physics Letters, 2009, 94(2): 021107-1-021107-3

    [10] Nakazawa M, Yamamoto T, Tamura K R. 1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator. Electronics Letters, 2000, 36(24): 2027-2029

    [11] Xu C, Liu X, Mollenauer L F, Wei X. Comparison of return-to-zero differential phase-shift keying and ON-OFF keying in long-haul dispersion managed transmission. IEEE Photonics Technology Letters, 2003, 15(4): 617-619

    [12] Martinez A, Yamashita S. Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes. Optics Express, 2011, 19(7): 6155-6163

    [13] Keller U, Tropper A C. Passively modelocked surface-emitting semiconductor lasers. Physics Reports, 2006, 429(2): 67-120

    [14] Oehler A E H, Südmeyer T, Weingarten K J, Keller U. 100 GHz passively mode-locked Er:Yb:glass laser at 1.5 μm with 1.6-ps pulses. Optics Express, 2008, 16(26): 21930-21935

    [15] Hoogland S, Dhanjal S, Tropper A C, Roberts J S, Haring R, Paschotta R, Morier-Genoud F, Keller U. Passively mode-locked diode-pumped surface-emitting semiconductor laser. IEEE Photonics Technology Letters, 2000, 12(9): 1135-1137

    [16] Wilcox K G, Quarterman A H, Apostolopoulos V, Beere H E, Farrer I, Ritchie D A, Tropper A C. 175 GHz, 400-fs-pulse harmonically mode-locked surface emitting semiconductor laser. Optics Express, 2012, 20(7): 7040-7045

    [17] Quarterman A H, Wilcox K G, Apostolopoulos V, Mihoubi Z, Elsmere S P, Farrer I, Ritchie D A, Tropper A C. A passively modelocked external-cavity semiconductor laser emitting 60-fs pulses. Nature Photonics, 2009, 3(12): 729-731

    [18] Rudin B, Wittwer V J, Maas D J H C, Hoffmann M, Sieber O D, Barbarin Y, Golling M, Südmeyer T, Keller U. High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power. Optics Express, 2010, 18(26): 27582-27588

    [19] Wilcox K G, Quarterman A H, Beere H, Ritchie D A, Tropper A C. High peak power femtosecond pulse passively mode-locked vertical-external-cavity surface-emitting laser. IEEE Photonics Technology Letters, 2010, 22(14): 1021-1023

    [20] Garnache A, Hoogland S, Tropper A C, Sagnes I, Saint-Girons G, Roberts J S. Sub-500-fs soliton pulse in a passively mode-locked broadband surface-emitting laser with 100-mW average power. Applied Physics Letters, 2002, 80(21): 3892-3894

    [21] Klopp P, Griebner U, Zorn M, Klehr A, Liero A, Weyers M, Erbert G. Mode-locked InGaAs-AlGaAs disk laser generating sub-200-fs pulses, pulse picking and amplification by a tapered diode amplifier. Optics Express, 2009, 17(13): 10820-10834

    [22] Aschwanden A, Lorenser D, Unold H J, Paschotta R, Gini E, Keller U. 2.1-W picosecond passively mode-locked external-cavity semiconductor laser. Optics Letters, 2005, 30(3): 272-274

    [23] Haring R, Paschotta R, Aschwanden A, Gini E, Morier-Genoud F, Keller U. High-power passively mode-locked semiconductor lasers. IEEE Journal of Quantum Electronics, 2002, 38(9): 1268-1275

    [24] Hoogland S, Garnache A, Sagnes I, Roberts J S, Tropper A C. 10-GHz train of sub-500-fs optical soliton-like pulses from a surfaceemitting semiconductor laser. IEEE Photonics Technology Letters, 2005, 17(2): 267-269

    [25] Aschwanden A, Lorenser D, Unold H J, Paschotta R, Gini E, Keller U. 10-GHz passively mode-locked surface emitting semiconductor laser with 1.4-W average output power. Applied Physics Letters, 2005, 86(13): 131102-1-131102-33

    [26] Lorenser D, Unold H J, Maas D J H C, Aschwanden A, Grange R, Paschotta R, Ebling D, Gini E, Keller U. Towards wafer-scale integration of high repetition rate passively modelocked surfaceemitting semiconductor lasers. Applied Physics B, Lasers and Optics, 2004, 79(8): 927-932

    [27] Lorenser D, Maas D J H C, Unold H J, Bellancourt A R, Rudin B, Gini E, Ebling D, Keller U. 50-GHz passively mode-locked surfaceemitting semiconductor laser with 100 mW average output power. IEEE Journal of Quantum Electronics, 2006, 42(8): 838-847

    [28] Hoogland S, Garnache A, Sagnes I, Paldus B, Weingarten K J, Grange R, Haiml M, Paschotta R, Keller U, Tropper A C. Picosecond pulse generation with 1.5 μm passively modelocked surface-emitting semiconductor laser. Electronics Letters, 2003, 39(11): 846-847

    [29] Lindberg H, Sadeghi M, Westlund M, Wang S M, Larsson A, Strassner M, Marcinkevicius S. Mode locking a 1550 nm semiconductor disk laser by using a GaInNAs saturable absorber. Optics Letters, 2005, 30(20): 2793-2795

    [30] Saarinen E J, Puustinen J, Sirbu A, Mereuta A, Caliman A, Kapon E, Okhotnikov O G. Power-scalable 1.57 μm mode-locked semiconductor disk laser using wafer fusion. Optics Letters, 2009, 34(20): 3139-3141

    [31] Khadour A, Bouchoule S, Aubin G, Harmand J C, Decobert J, Oudar J L. Ultrashort pulse generation from 1.56 μm mode-locked VECSEL at room temperature. Optics Express, 2010, 18(19): 19902-19913

    [32] Kuznetsov M. VECSEL Semiconductor Lasers: A Path to High-Power, Quality Beam and UV to IR Wavelength by Design. In: Okhotnikov O G, ed. Semiconductor Disk Lasers: Physics and Technology. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2010

    [33] Rudin B, Rutz A, Hoffmann M, Maas D J H C, Bellancourt A R, Gini E, Südmeyer T, Keller U. Highly efficient optically pumped vertical-emitting semiconductor laser with more than 20 W average output power in a fundamental transverse mode. Optics Letters, 2008, 33(22): 2719-2721

    [34] Lindberg H, Strassner M, Bengtsson J, Larsson A. InP-based optically pumped VECSEL operating CW at 1550 nm. IEEE Photonics Technology Letters, 2004, 16(2): 362-364

    [35] Lindberg H, Strassner M, Gerster E, Larsson A. 0.8 W optically pumped vertical external cavity surface emitting laser operating CW at 1550 nm. Electronics Letters, 2004, 40(10): 601-602

    [36] Rautiainen J, Lyytikainen J, Sirbu A, Mereuta A, Caliman A, Kapon E, Okhotnikov O G. 2.6 W optically-pumped semiconductor disk laser operating at 1.57-μm using wafer fusion. Optics Express, 2008, 16(26): 21881-21886

    [37] Tourrenc J P, Bouchoule S, Khadour A, Harmand J C, Decobert J, Lagay N, Lafosse X, Sagnes I, Leroy L, Oudar J L. Thermal optimization of 1.55 μm OP-VECSEL with hybrid metal-metamorphic mirror for single-mode high power operation. Optical and Quantum Electronics, 2008, 40(2-4): 155-165

    [38] Lindberg H, Strassner M, Bengtsson J, Larsson A. High-power optically pumped 1550-nm VECSEL with a bonded silicon heat spreader. IEEE Photonics Technology Letters, 2004, 16(5): 1233-1235

    [39] Zhao Z, Bouchoule S, Ferlazzo L, Sirbu A, Mereuta A, Kapon E, Galopin E, Harmand J C, Decobert J, Oudar J L. Cost-effective thermally-managed 1.55-μm VECSEL with hybrid mirror on copper substrate. IEEE Journal of Quantum Electronics, 2012, 48(5): 643-650

    [40] Kemp A J, Valentine G J, Hopkins J M, Hastie J E, Smith S A, Calvez S, Dawson M D, Burns D. Thermal management in verticalexternal-cavity surface-emitting lasers: finite-element analysis of a heatspreader approach. IEEE Journal of Quantum Electronics, 2005, 41(2): 148-155

    [41] Maclean A J, Birch R B, Roth P W, Kemp A J, Burns D. Limits on efficiency and power scaling in semiconductor disk lasers with diamond heatspreaders. Journal of the Optical Society of America B, Optical Physics, 2009, 26(12): 2228-2236

    [42] Lindberg H, Larsson A, Strassner M. Single-frequency operation of a high-power, long-wavelength semiconductor disk laser. Optics Letters, 2005, 30(17): 2260-2262

    [43] Bousseksou A, Bouchoule S, El Kurdi M, Strassner M, Sagnes I, Crozat P, Jacquet J. Fabrication and characterization of 1.55 μm single transverse mode large diameter electrically pumped VECSEL. Optical and Quantum Electronics, 2007, 38(15): 1269-1278

    [44] Caliman A, Mereuta A, Suruceanu G, Iakovlev V, Sirbu A, Kapon E. 8 mW fundamental mode output of wafer-fused VCSELs emitting in the 1550-nm band. Optics Express, 2011, 19(18): 16996-17001

    [45] Zhao Z, Bouchoule S, Galopin E, Ferlazzo L, Patriarche G, Harmand J C, Decobert J, Oudar J L. Thermal management in 1.55 μm InP-based VECSELs: heteroepitaxy of GaAs-based mirror and integration with electroplated substrate. In: French Symposium on Emerging Technologies for Micro- and Nano-fabrication, France, 2013

    [46] Paschotta R, Keller U. Passive mode locking with slow saturable absorbers. Applied Physics B, Lasers and Optics, 2001, 73(7): 653-662

    [47] Keller U. Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight. Applied Physics B, Lasers and Optics, 2010, 100(1): 15-25

    [48] Keller U, Knox W H, Roskos H. Coupled-cavity resonant passive mode-locked Ti: sapphire laser. Optics Letters, 1990, 15(23): 1377-1379

    [49] Keller U. Ultrafast all-solid state laser technology. Applied Physics B, Lasers and Optics, 1994, 58(5): 347-363

    [50] Haiml M, Siegner U, Morier-Genoud F, Keller U, Luysberg M, Lutz R C, Specht P, Weber E R. Optical nonlinearity in low-temperaturegrown GaAs: microscopic limitations and optimization strategies. Applied Physics Letters, 1999, 74(21): 3134-3136

    [51] Lamprecht K F, Juen S, Palmetshofer L, Hopfel R A. Ultrashort carrier lifetimes in H+ bombarded InP. Applied Physics Letters, 1991, 59(8): 926-928

    [52] Mangeney J, Choumane H, Patriarche G, Leroux G, Aubin G, Harmand J C, Oudar J L, Bernas H. Comparison of light- and heavyion-irradiated quantum-wells for use as ultrafast saturable absorbers. Applied Physics Letters, 2001, 79(17): 2722-2724

    [53] Lugagne Delpon E, Oudar J L, Bouche N, Raj R, Shen A, Stelmakh N, Lourtioz J M. Ultrafast excitonic saturable absorption in ionimplanted InGaAs/InAlAs multiple quantum wells. Applied Physics Letters, 1998, 72(7): 759-761

    [54] Joulaud L, Mangeney J, Lourtioz J M, Crozat P, Patriarche G. Thermal stability of ion irradiated InGaAs with (sub-) picosecond carrier lifetime. Applied Physics Letters, 2003, 82(6): 856-858

    [55] Khadour A. Source d'impulsions breves a 1.55 μm en laser a cavite verticale externe pour application a l'echantillonnage optique lineaire. Dissertation for the Doctoral Degree. France: ecole Polytechnique, 2009

    [56] Gupta S, Whitaker J F, Mourou G A. Ultrafast carrier dynamics in III-V semiconductors grown by molecular-beam epitaxy at very low substrate temperatures. IEEE Journal of Quantum Electronics, 1992, 28(10): 2464-2472

    [57] Chin A, Chen W J, Ganikhanov F, Lin G R, Shieh J M, Pan C L, Hsieh K C. Microstructure and subpicosecond photoresponse in GaAs grown by molecular beam epitaxy at very low temperatures. Applied Physics Letters, 1996, 69(3): 397-399

    [58] Okuno T, Masumoto Y, Ito M, Okamoto H. Large optical nonlinearity and fast response time in low-temperature grown GaAs/AlAs multiple quantum wells. Applied Physics Letters, 2000, 77(1): 58-60

    [59] Gupta S, Frankel M Y, Valdmanis J A, Whitaker J F, Mourou G A, Smith F W, Calawa A R. Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures. Applied Physics Letters, 1991, 59(25): 3276-3278

    [60] Harmon E S, Melloch M R, Woodall J M, Nolte D D, Otsuka N, Chang C L. Carrier lifetime versus anneal in low temperature growth GaAs. Applied Physics Letters, 1993, 63(16): 2248-2250

    [61] Takahashi R, Kawamura Y, Kagawa T, Iwamura H. Ultrafast 1.55-μm photoresponses in low-temperature-grown InGaAs/InAlAs quantum wells. Applied Physics Letters, 1994, 65(14): 1790-1792

    [62] Okuno T, Masumoto Y, Sakuma Y, Hayasaki Y, Okamoto H. Femtosecond response time in beryllium-doped low-temperaturegrown GaAs/AlAs multiple quantum wells. Applied Physics Letters, 2001, 79(6): 764-766

    [63] Sderstrom D, Marcinkevicius S, Karlsson S, Lourdudoss S. Carrier trapping due to Fe3+/Fe2+ in epitaxial InP. Applied Physics Letters, 1997, 70(25): 3374-3376

    [64] Gicquel-Guezo M, Loualiche S, Even J, Labbe C, Dehaese O, Le Corre A, Folliot H, Pellan Y. 290 fs switching time of Fe-doped quantum well saturable absorbers in a microcavity in 1.55 μm range. Applied Physics Letters, 2004, 85(24): 5926-5928

    [65] Kondow M, Uomi K, Hosomi K, Mozume T. Gas-source molecular beam epitaxy of GaNxAs1 - x using a N radical as the N source. Japanese Journal of Applied Physics, 1994, 33(8A): L1056-L1058

    [66] Yang X, Heroux J B, Mei L F, Wang W I. InGaAsNSb/GaAs quantum wells for 1.55 μm lasers grown by molecular-beam epitaxy. Applied Physics Letters, 2001, 78(26): 4068-4070

    [67] Harkonen A, Jouhti T, Tkachenko N V, Lemmetyinen H, Ryvkin B, Okhotnikov O G, Sajavaara T, Keinonen J. Dynamics of photoluminescence in GaInNAs saturable absorber mirrors. Applied Physics A, Materials Science & Processing, 2003, 77(7): 861-863

    [68] Le Du M, Harmand J C, Meunier K, Patriarche G, Oudar J L. Growth of GaNxAs1 - x atomic monolayers and their insertion in the vicinity of GaInAs quantum wells. IEE Proceedings- Optoelectronics, 2004, 151(5): 254-258

    [69] Du M L, Harmand J C, Mauguin O, Largeau L, Travers L, Oudar J L. Quantum-well saturable absorber at 1.55 μm on GaAs substrate with a fast recombination rate. Applied Physics Letters, 2006, 88(20): 201110-1-201110-3

    [70] Zhao Z, Bouchoule S, Song J Y, Galopin E, Harmand J C, Decobert J, Aubin G, Oudar J L. Subpicosecond pulse generation from a 1.56 μm mode-locked VECSEL. Optics Letters, 2011, 36(22): 4377- 4379

    [71] Cojocaru E, Julea T, Herisanu N. Stability and astigmatic compensation analysis of five- and six- or seven-mirror cavities for mode-locked dye lasers. Applied Optics, 1989, 28(13): 2577-2580

    [72] Li K K, Dienes A, Whinnery J R. Stability and astigmatic compensation analysis of five-mirror cavity for mode-locked dye lasers. Applied Optics, 1981, 20(3): 407-411

    [73] Anctil G, McCarthy N, Piche M. Sensitivity of a three-mirror cavity to thermal and nonlinear lensing: Gaussian-beam analysis. Applied Optics, 2000, 39(36): 6787-6798

    [74] Hoffmann M, Sieber O D, Maas D J H C, Wittwer V J, Golling M, Südmeyer T, Keller U. Experimental verification of soliton-like pulse-shaping mechanisms in passively modelocked VECSELs. Optics Express, 2010, 18(10): 10143-10153

    [75] Sieber O D, Hoffmann M, Wittwer V J, Mangold M, Golling M, Tilma B W, Südmeyer T, Keller U. Experimentally verified pulse formation model for high-power femtosecond VECSELs. Applied Physics B, Lasers and Optics, 2013, 113(1): 133-145

    Zhuang ZHAO, Sophie BOUCHOULE, Jean-Christophe HARMAND, Gilles PATRIARCHE, Guy AUBIN, Jean-Louis OUDAR. Recent advances in development of vertical-cavity based short pulse source at 1.55 μm[J]. Frontiers of Optoelectronics, 2014, 7(1): 1
    Download Citation