• Spacecraft Recovery & Remote Sensing
  • Vol. 45, Issue 6, 15 (2024)
Xinyi SHEN1, Kang YU2, Jun YAN2, and Caishan LIU1,3,*
Author Affiliations
  • 1College of Engineering, Peking University, Beijing 100871, China
  • 2Beijing Institute of Spacecraft System Engineering, Beijing 100094, China
  • 3School of Science, Qingdao University of Technology, Qingdao 266520, China
  • show less
    DOI: 10.3969/j.issn.1009-8518.2024.06.002 Cite this Article
    Xinyi SHEN, Kang YU, Jun YAN, Caishan LIU. Predicting Impact Responses of the Spacecraft Soft Landing on the Airbag System by the Long Short-Term Memory Network[J]. Spacecraft Recovery & Remote Sensing, 2024, 45(6): 15 Copy Citation Text show less
    References

    [2] STANLEY D, COOK S, CONNOLLY J, et al. Explation Systems Architecture Study: Overview of Architecture Mission Operations Approach[C]SpaceOps 2006 Conference, June 1923, 2006, Rome, Italy. [S.l.]: AIAA, 2006: AIAA 20065935. DOI: 10.25146.20065935.

    [3] D NORTHEY, C MORGAN. Improved Inflatable Landing Systems for Low Cost Planetary Landers. Acta Astronautica, 59, 726-733(2006).

    [4] D CADOGAN, C SANDY, M GRAHNE. Development and Evaluation of the Mars Pathfinder Inflatable Airbag Landing System. Acta Astronautica, 50, 633-640(2002).

    [5] SALAMA M, DAVIS G, KUO C, et al. Simulation of Airbag Impact Dynamics f Mars Ling[C]Proceedings of the Dynamics Specialists Conference. Atlanta, GA, USA: AIAA, 1996. DOI: 10.25146.19961209.

    [6] STEIN J, SY C, WILSON D, et al. Recent Developments in Inflatable Airbag Impact Attenuation Systems f Mars Explation[C]44th AIAAASMEEAHS Structures, Structural Dynamics, Materials Conference, April 710, 2003, Nfolk, Virginia. [S.l.]: AIAA, 2003. DOI: 10.25146.20031900.

    [9] TIMMERS R B, HARDY R C, WELCH J V, et al. Modeling Simulation of the Second Generation ion Crew Module Air Bag Ling System[C]20th AIAA Aerodynamic Decelerat Systems Technology Conference Seminar, May 47, 2009, Seattle, Washington. [S.l.]: AIAA, 2009. DOI: 10.25146.20092921.

    [10] D KARAYEL. Simulation of Direct Extrusion Process and Optimal Design of Technological Parameters Using FEM and Artificial Neural Network. Key Engineering Materials, 367, 185-192(2008).

    [11] B N FETENE, R SHUFEN, U S DIXIT et al. FEM-based Neural Network Modeling of Laser-assisted Bending. Neural Computing and Applications, 29, 69-82(2018).

    [12] C S HUANG, S L HUNG, C M WEN et al. A Neural Network Approach for Structural Identification and Diagnosis of a Building From Seismic Response Data. Earthquake Engineering and Structural Dynamics, 32, 187-206(2003).

    [13] T H YI, H N LI, H M SUN et al. Multi-stage Structural Damage Diagnosis Method Based on Energy-damage Theory. Smart Structures and Systems, 12, 345-361(2013).

    [14] R GUARIZE, N A F MATOS, L V S SAGRILO et al. Neural Networks in the Dynamic Response Analysis of Slender Marine Structures. Applied Ocean Research, 29, 191-198(2007).

    [15] N D LAGAROS, M PAPADRAKAKIS et al. Neural Network Based Prediction Schemes of the Non-linear Seismic Response of 3D Buildings. Advances in Engineering Software, 44, 92-115(2012).

    [16] R ZHANG, Z CHEN, S CHEN et al. Deep Long Short-term Memory Networks for Nonlinear Structural Seismic Response Prediction. Computers and Structures, 220, 55-68(2019).

    [17] J M ZHOU, L DONG, W GUAN et al. Impact Load Identification of Nonlinear Structures Using Deep Recurrent Neural Network. Mechanical Systems and Signal Processing, 133, 106292(2019).

    [18] D LI, X JIANG, W ZHANG et al. Parameter Determination for Ice Material Model Based on a Bidirectional Long Short-term Memory Neural Network. International Journal of Impact Engineering, 161, 1-10(2022).

    [19] WANG J T, NEFSKE D J, et al. A New CAL3D Airbag Inflation Model[J]. SAE Transactions, 1988: 697706. DOI: 10.4271880654.

    [20] STEPHEN D M. ion Ling Simulatio Eight Soil Model Comparison: NASACR2009215757[ROL]. (20090101)[20240813]. https:ntrs.nasa.govcitations20090026521NASA, 2009.

    [21] LEE T J, MCKINNEY J, FARKAS M A. Airbag Ling Impact TestAnalysis f the Crew Explation Vehicle[C]Proceedings of the 49th AIAAASMEEAHS Structures, Structural Dynamics, Materials Conference. [S.l.]: AIAA, 2008. DOI: 10.25146.20081745.

    [24] MCKINNEY J, FERGUSON P, DIAZ A R, et al. Boeing CST100 Ling Recovery System Design Development Testing[C]AIAA Aerodynamic Decelerat Systems (ADS) Conference, March 2528, 2013, Daytona Beach, Flida. [S.l.]: AIAA, 2013. DOI: 10.25146.20131262.

    [25] KINGMA D, BA J. Adam: A Method f Stochastic Optimization[C]International Conference on Learning Representations, May 79, 2015, San Diego. Ithaca, NY: ArXiv, 2014:13.

    [26] E SAKARIDIS, N KARATHANASOPOULOS, D MOHR et al. Machine-learning Based Prediction of Crash Response of Tubular Structures. International Journal of Impact Engineering, 166, 104240(2022).

    Xinyi SHEN, Kang YU, Jun YAN, Caishan LIU. Predicting Impact Responses of the Spacecraft Soft Landing on the Airbag System by the Long Short-Term Memory Network[J]. Spacecraft Recovery & Remote Sensing, 2024, 45(6): 15
    Download Citation