[2] STANLEY D, COOK S, CONNOLLY J, et al. Explation Systems Architecture Study: Overview of Architecture Mission Operations Approach[C]SpaceOps 2006 Conference, June 1923, 2006, Rome, Italy. [S.l.]: AIAA, 2006: AIAA 20065935. DOI: 10.25146.20065935.
[3] D NORTHEY, C MORGAN. Improved Inflatable Landing Systems for Low Cost Planetary Landers. Acta Astronautica, 59, 726-733(2006).
[4] D CADOGAN, C SANDY, M GRAHNE. Development and Evaluation of the Mars Pathfinder Inflatable Airbag Landing System. Acta Astronautica, 50, 633-640(2002).
[5] SALAMA M, DAVIS G, KUO C, et al. Simulation of Airbag Impact Dynamics f Mars Ling[C]Proceedings of the Dynamics Specialists Conference. Atlanta, GA, USA: AIAA, 1996. DOI: 10.25146.19961209.
[6] STEIN J, SY C, WILSON D, et al. Recent Developments in Inflatable Airbag Impact Attenuation Systems f Mars Explation[C]44th AIAAASMEEAHS Structures, Structural Dynamics, Materials Conference, April 710, 2003, Nfolk, Virginia. [S.l.]: AIAA, 2003. DOI: 10.25146.20031900.
[9] TIMMERS R B, HARDY R C, WELCH J V, et al. Modeling Simulation of the Second Generation ion Crew Module Air Bag Ling System[C]20th AIAA Aerodynamic Decelerat Systems Technology Conference Seminar, May 47, 2009, Seattle, Washington. [S.l.]: AIAA, 2009. DOI: 10.25146.20092921.
[10] D KARAYEL. Simulation of Direct Extrusion Process and Optimal Design of Technological Parameters Using FEM and Artificial Neural Network. Key Engineering Materials, 367, 185-192(2008).
[11] B N FETENE, R SHUFEN, U S DIXIT et al. FEM-based Neural Network Modeling of Laser-assisted Bending. Neural Computing and Applications, 29, 69-82(2018).
[12] C S HUANG, S L HUNG, C M WEN et al. A Neural Network Approach for Structural Identification and Diagnosis of a Building From Seismic Response Data. Earthquake Engineering and Structural Dynamics, 32, 187-206(2003).
[13] T H YI, H N LI, H M SUN et al. Multi-stage Structural Damage Diagnosis Method Based on Energy-damage Theory. Smart Structures and Systems, 12, 345-361(2013).
[14] R GUARIZE, N A F MATOS, L V S SAGRILO et al. Neural Networks in the Dynamic Response Analysis of Slender Marine Structures. Applied Ocean Research, 29, 191-198(2007).
[15] N D LAGAROS, M PAPADRAKAKIS et al. Neural Network Based Prediction Schemes of the Non-linear Seismic Response of 3D Buildings. Advances in Engineering Software, 44, 92-115(2012).
[16] R ZHANG, Z CHEN, S CHEN et al. Deep Long Short-term Memory Networks for Nonlinear Structural Seismic Response Prediction. Computers and Structures, 220, 55-68(2019).
[17] J M ZHOU, L DONG, W GUAN et al. Impact Load Identification of Nonlinear Structures Using Deep Recurrent Neural Network. Mechanical Systems and Signal Processing, 133, 106292(2019).
[18] D LI, X JIANG, W ZHANG et al. Parameter Determination for Ice Material Model Based on a Bidirectional Long Short-term Memory Neural Network. International Journal of Impact Engineering, 161, 1-10(2022).
[19] WANG J T, NEFSKE D J, et al. A New CAL3D Airbag Inflation Model[J]. SAE Transactions, 1988: 697706. DOI: 10.4271880654.
[20] STEPHEN D M. ion Ling Simulatio Eight Soil Model Comparison: NASACR2009215757[ROL]. (20090101)[20240813]. https:ntrs.nasa.govcitations20090026521NASA, 2009.
[21] LEE T J, MCKINNEY J, FARKAS M A. Airbag Ling Impact TestAnalysis f the Crew Explation Vehicle[C]Proceedings of the 49th AIAAASMEEAHS Structures, Structural Dynamics, Materials Conference. [S.l.]: AIAA, 2008. DOI: 10.25146.20081745.
[24] MCKINNEY J, FERGUSON P, DIAZ A R, et al. Boeing CST100 Ling Recovery System Design Development Testing[C]AIAA Aerodynamic Decelerat Systems (ADS) Conference, March 2528, 2013, Daytona Beach, Flida. [S.l.]: AIAA, 2013. DOI: 10.25146.20131262.
[25] KINGMA D, BA J. Adam: A Method f Stochastic Optimization[C]International Conference on Learning Representations, May 79, 2015, San Diego. Ithaca, NY: ArXiv, 2014:13.
[26] E SAKARIDIS, N KARATHANASOPOULOS, D MOHR et al. Machine-learning Based Prediction of Crash Response of Tubular Structures. International Journal of Impact Engineering, 166, 104240(2022).