• Chinese Journal of Lasers
  • Vol. 48, Issue 19, 1914004 (2021)
Jianqiang Gu1、*, Kemeng Wang1, Yi Xu1, Chunmei Ouyang1, Zhen Tian1, Jiaguang Han1, and Weili Zhang2
Author Affiliations
  • 1Center for THz Waves, College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
  • 2School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, America
  • show less
    DOI: 10.3788/CJL202148.1914004 Cite this Article Set citation alerts
    Jianqiang Gu, Kemeng Wang, Yi Xu, Chunmei Ouyang, Zhen Tian, Jiaguang Han, Weili Zhang. Metamaterials-Based Terahertz Photoconductive Antennas[J]. Chinese Journal of Lasers, 2021, 48(19): 1914004 Copy Citation Text show less
    References

    [1] Stoik C D, Bohn M J, Blackshire J L. Nondestructive evaluation of aircraft composites using reflective terahertz time domain spectroscopy[J]. Optics Express, 16, 17039-17051(2008).

    [2] Yakovlev E V, Zaytsev K I, Dolganova I N et al. Non-destructive evaluation of polymer composite materials at the manufacturing stage using terahertz pulsed spectroscopy[J]. IEEE Transactions on Terahertz Science and Technology, 5, 810-816(2015).

    [3] Ulbricht R, Hendry E, Shan J et al. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy[J]. Reviews of Modern Physics, 83, 543-586(2011).

    [4] Kawase K, Ogawa Y, Watanabe Y et al. Non-destructive terahertz imaging of illicit drugs using spectral fingerprints[J]. Optics Express, 11, 2549-2554(2003).

    [5] Ahi K, Shahbazmohamadi S, Asadizanjani N. Quality control and authentication of packaged integrated circuits using enhanced-spatial-resolution terahertz time-domain spectroscopy and imaging[J]. Optics and Lasers in Engineering, 104, 274-284(2018).

    [6] Minin I V, Minin O V. THz quasioptics applications in security[J]. Proceedings of SPIE, 6212, 621210(2006).

    [7] Federici J, Moeller L. Review of terahertz and subterahertz wireless communications[J]. Journal of Applied Physics, 107, 111101(2010).

    [8] Saeedkia D. Handbook of terahertz technology for imaging, sensing and communications[M](2013).

    [9] Yang X, Zhao X, Yang K et al. Biomedical applications of terahertz spectroscopy and imaging[J]. Trends in Biotechnology, 34, 810-824(2016).

    [10] Smolyanskaya O A, Chernomyrdin N V, Konovko A A et al. Terahertz biophotonics as a tool for studies of dielectric and spectral properties of biological tissues and liquids[J]. Progress in Quantum Electronics, 62, 1-77(2018).

    [11] Gavdush A A, Chernomyrdin N V, Malakhov K M et al. Terahertz spectroscopy of gelatin-embedded human brain gliomas of different grades: a road toward intraoperative THz diagnosis[J]. Journal of Biomedical Optics, 24, 027001(2019).

    [12] Zaytsev K I, Dolganova I N, Chernomyrdin N V et al. The progress and perspectives of terahertz technology for diagnosis of neoplasms: a review[J]. Journal of Optics, 22, 013001(2020).

    [13] Liu X Q, Yao J L, Huang F et al. Study on detection of penicillin drugs based on terahertz time-domain spectroscopy[J]. Acta Optica Sinica, 40, 0630001(2020).

    [14] Graham-Rowe D. Terahertz takes to the stage[J]. Nature Photonics, 1, 75-77(2007).

    [15] Mittleman D M, Jacobsen R H, Neelamani R et al. Gas sensing using terahertz time-domain spectroscopy[J]. Applied Physics B, 67, 379-390(1998).

    [16] Woodward R M, Wallace V P, Arnone D D et al. Terahertz pulsed imaging of skin cancer in the time and frequency domain[J]. Journal of Biological Physics, 29, 257-259(2003).

    [17] Federici J F, Schulkin B, Huang F et al. THz imaging and sensing for security applications: explosives, weapons and drugs[J]. Semiconductor Science and Technology, 20, S266-S280(2005).

    [18] van Exter M, Fattinger C, Grischkowsky D. High-brightness terahertz beams characterized with an ultrafast detector[J]. Applied Physics Letters, 55, 337-339(1989).

    [19] Kübler C, Huber R, Tübel S et al. Ultrabroadband detection of multi-terahertz field transients with GaSe electro-optic sensors: approaching the near infrared[J]. Applied Physics Letters, 85, 3360-3362(2004).

    [20] Liu K, Xu J Z, Zhang X C. GaSe crystals for broadband terahertz wave detection[J]. Applied Physics Letters, 85, 863-865(2004).

    [21] Huber R, Brodschelm A, Tauser F et al. Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz[J]. Applied Physics Letters, 76, 3191-3193(2000).

    [22] Brown E R, McIntosh K A, Nichols K B et al. Photomixing up to 3.8 THz in low-temperature-grown GaAs[J]. Applied Physics Letters, 66, 285-287(1995).

    [23] Wu Q, Zhang X C. Ultrafast electro-optic field sensors[J]. Applied Physics Letters, 68, 1604-1606(1996).

    [24] Gu P, Tani M, Kono S et al. Study of terahertz radiation from InAs and InSb[J]. Journal of Applied Physics, 91, 5533-5537(2002).

    [25] Zhang X C, Hu B B, Darrow J T et al. Generation of femtosecond electromagnetic pulses from semiconductor surfaces[J]. Applied Physics Letters, 56, 1011-1013(1990).

    [26] Darrow J T, Hu B B, Zhang X C et al. Subpicosecond electromagnetic pulses from large-aperture photoconducting antennas[J]. Optics Letters, 15, 323-325(1990).

    [27] Guerboukha H, Nallappan K, Skorobogatiy M. Exploiting k-space/frequency duality toward real-time terahertz imaging[J]. Optica, 5, 109-116(2018).

    [28] Auston D H. Picosecond optoelectronic switching and gating in silicon[J]. Applied Physics Letters, 26, 101-103(1975).

    [29] Mourou G, Stancampiano C V, Blumenthal D. Picosecond microwave pulse generation[J]. Applied Physics Letters, 38, 470-472(1981).

    [30] Grischkowsky D, Keiding S, van Exter M et al. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors[J]. Journal of the Optical Society of America B, 7, 2006-2015(1990).

    [31] Auston D H, Cheung K P, Smith P R. Picosecond photoconducting Hertzian dipoles[J]. Applied Physics Letters, 45, 284-286(1984).

    [32] Sun F G, Wagoner G A, Bentz D et al. Measurement of free-space terahertz pulses via long-lifetime photoconductors[C]. //LEOS ‘95. IEEE Lasers and Electro-Optics Society 1995 Annual Meeting, October 30-31, 1995, San Francisco, CA, USA., 222-223(1995).

    [33] Cai Y, Brener I, Lopata J et al. Coherent terahertz radiation detection: direct comparison between free-space electro-optic sampling and antenna detection[J]. Applied Physics Letters, 73, 444-446(1998).

    [34] Tani M, Lee K S, Zhang X C. Detection of terahertz radiation with low-temperature-grown GaAs-based photoconductive antenna using 1.55 μm probe[J]. Applied Physics Letters, 77, 1396-1398(2000).

    [35] Liu T A, Tani M, Nakajima M et al. Ultrabroadband terahertz field detection by proton-bombarded InP photoconductive antennas[J]. Optics Express, 12, 2954-2959(2004).

    [36] O’Hara J F, Zide J, Gossard A C et al. Enhanced terahertz detection via ErAs: GaAs nanoisland superlattices[J]. Applied Physics Letters, 88, 251119(2006).

    [37] Roehle H, Dietz R J B, Hensel H J et al. Next generation 1.5 μm terahertz antennas: mesa-structuring of InGaAs/InAlAs photoconductive layers[J]. Optics Express, 18, 2296-2301(2010).

    [38] Beck M, Schäfer H, Klatt G et al. Impulsive terahertz radiation with high electric fields from an amplifier-driven large-area photoconductive antenna[J]. Optics Express, 18, 9251-9257(2010).

    [39] Peytavit E, Lepilliet S, Hindle F et al. Milliwatt-level output power in the sub-terahertz range generated by photomixing in a GaAs photoconductor[J]. Applied Physics Letters, 99, 223508(2011).

    [40] Preu S, Mittendorff M, Lu H et al. 1550 nm ErAs: In(Al)GaAs large area photoconductive emitters[J]. Applied Physics Letters, 101, 101105(2012).

    [41] Kostakis I, Saeedkia D, Missous M. Characterization of low temperature InGaAs-InAlAs semiconductor photo mixers at 1.55 μm wavelength illumination for terahertz generation and detection[J]. Journal of Applied Physics, 111, 103105(2012).

    [42] Baker C, Gregory I S, Tribe W R et al. Highly resistive annealed low-temperature-grown InGaAs with sub-500 fs carrier lifetimes[J]. Applied Physics Letters, 85, 4965-4967(2004).

    [43] Brorson S D, Zhang J C, Keiding S R. Ultrafast carrier trapping and slow recombination in ion-bombarded silicon on sapphire measured via THz spectroscopy[J]. Applied Physics Letters, 64, 2385-2387(1994).

    [44] Piao Z S, Tani M, Sakai K. Carrier dynamics and terahertz radiation in photoconductive antennas[J]. Japanese Journal of Applied Physics, 39, 96-100(2000).

    [45] Gupta S, Frankel M Y, Valdmanis J A et al. Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures[J]. Applied Physics Letters, 59, 3276-3278(1991).

    [46] Stone M R, Naftaly M, Miles R E et al. Electrical and radiation characteristics of semilarge photoconductive terahertz emitters[J]. IEEE Transactions on Microwave Theory and Techniques, 52, 2420-2429(2004).

    [47] Cai Y, Brener I, Lopata J et al. Design and performance of singular electric field terahertz photoconducting antennas[J]. Applied Physics Letters, 71, 2076-2078(1997).

    [48] Tani M, Matsuura S, Sakai K et al. Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs[J]. Applied Optics, 36, 7853-7859(1997).

    [49] Gallagher W J, Chi C C, Duling I N et al. Subpicosecond optoelectronic study of resistive and superconductive transmission lines[J]. Applied Physics Letters, 50, 350-352(1987).

    [50] Zolfagharloo-Koohi M, Neshat M. Antenna efficiency in graphene-based THz photoconductive antennas[C]. //2014 22nd Iranian Conference on Electrical Engineering (ICEE), May 20-22, 2014, Tehran, Iran., 1587-1590(2014).

    [51] Benicewicz P K, Taylor A J. Scaling of terahertz radiation from large-aperture biased InP photoconductors[J]. Optics Letters, 18, 1332-1334(1993).

    [52] Suzuki M, Tonouchi M. Fe-implanted InGaAs terahertz emitters for 1.56 μm wavelength excitation[J]. Applied Physics Letters, 86, 051104(2005).

    [53] Pedersen J E, Lyssenko V G, Hvam J M et al. Ultrafast local field dynamics in photoconductive THz antennas[J]. Applied Physics Letters, 62, 1265-1267(1993).

    [54] Hinkov I, Harzendorf G, Kluska S et al. Generation of terahertz pulsed radiation from photoconductive emitters using 1060 nm laser excitation[C]. //2007 Joint 32nd International Conference on Infrared and Millimeter Waves and the 15th International Conference on Terahertz Electronics, September 2-9, 2007, Cardiff, UK., 196-197(2007).

    [55] Budiarto E, Margolies J, Jeong S et al. High-intensity terahertz pulses at 1-kHz repetition rate[J]. IEEE Journal of Quantum Electronics, 32, 1839-1846(1996).

    [56] Wu L Z, Zhao G Z, Wang H Y et al. Terahertz emission of photoconductive antenna under different biased electrical fields[J]. Proceedings of SPIE, 7512, 75120F(2009).

    [57] van Exter M, Grischkowsky D R. Characterization of an optoelectronic terahertz beam system[J]. IEEE Transactions on Microwave Theory and Techniques, 38, 1684-1691(1990).

    [58] Jepsen P U, Keiding S R. Radiation patterns from lens-coupled terahertz antennas[J]. Optics Letters, 20, 807-809(1995).

    [59] van Rudd J, Mittleman D M. Influence of substrate-lens design in terahertz time-domain spectroscopy[J]. Journal of the Optical Society of America B, 19, 319-329(2002).

    [60] Formanek F, Brun M A, Umetsu T et al. Aspheric silicon lenses for terahertz photoconductive antennas[J]. Applied Physics Letters, 94, 021113(2009).

    [61] Globisch B, Dietz R J B, Kohlhaas R B et al. Iron doped InGaAs: competitive THz emitters and detectors fabricated from the same photoconductor[J]. Journal of Applied Physics, 121, 053102(2017).

    [62] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 292, 77-79(2001).

    [63] Ebbesen T W, Lezec H J, Ghaemi H F et al. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature, 391, 667-669(1998).

    [64] Schurig D, Mock J J, Justice B J et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 314, 977-980(2006).

    [65] Ergin T, Stenger N, Brenner P et al. Three-dimensional invisibility cloak at optical wavelengths[J]. Science, 328, 337-339(2010).

    [66] Cong L Q, Singh R. Symmetry-protected dual bound states in the continuum in metamaterials[J]. Advanced Optical Materials, 1900383(2019).

    [67] Koshelev K, Lepeshov S, Liu M K et al. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum[J]. Physical Review Letters, 121, 193903(2018).

    [68] Landy N I, Sajuyigbe S, Mock J J et al. Perfect metamaterial absorber[J]. Physical Review Letters, 100, 207402(2008).

    [69] Zhang Y, Li T, Chen Q et al. Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies[J]. Scientific Reports, 5, 18463(2015).

    [70] Cui Z J, Wang Y, Zhu D Y et al. Perfect absorption conditions and absorption characteristics of terahertz metamaterial absorber[J]. Chinese Journal of Lasers, 46, 0614023(2019).

    [71] Pendry J B. Negative refraction makes a perfect lens[J]. Review Letters, 85, 3966-3969(2000).

    [72] Fang N, Lee H, Sun C et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 308, 534-537(2005).

    [73] Zhang S, Genov D A, Wang Y et al. Plasmon-induced transparency in metamaterials[J]. Physical Review Letters, 101, 047401(2008).

    [74] Zhang M, Yan F P, Du X M et al. Design and analysis of electromagnetically induced transparency in THz multiband[J]. Chinese Journal of Lasers, 48, 0314001(2021).

    [75] Liu N, Langguth L, Weiss T et al. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit[J]. Nature Materials, 8, 758-762(2009).

    [76] Liu X, Deng J H, Jin M K et al. Cassegrain metasurface for generation of orbital angular momentum of light[J]. Applied Physics Letters, 115, 221102(2019).

    [77] Ren H R, Briere G, Fang X Y et al. Metasurface orbital angular momentum holography[J]. Nature Communications, 10, 2986(2019).

    [78] Park D, Jeong K, Maeng I et al. Ultrafast photo-response by surface state-mediated optical transitions in topological insulator Bi2Te3 nanowire[J]. Advanced Optical Materials, 7, 1900621(2019).

    [79] Xie F J, Lian Z, Zhang S et al. Reversible engineering of topological insulator surface state conductivity through optical excitation[J]. Nanotechnology, 32, 17LT01(2021).

    [80] Huang S Y, Xu X F. Optical chirality detection using a topological insulator transistor[J]. Advanced Optical Materials, 9, 2002210(2021).

    [81] Cong L Q, Xu N N, Han J G et al. A tunable dispersion-free terahertz metadevice with pancharatnam-berry-phase-enabled modulation and polarization control[J]. Advanced Materials, 27, 6630-6636(2015).

    [82] Kenney M, Li S X, Zhang X Q et al. Pancharatnam-berry phase induced spin-selective transmission in herringbone dielectric metamaterials[J]. Advanced Materials, 28, 9567-9572(2016).

    [83] Schurig D, Mock J J, Smith D R. Electric-field-coupled resonators for negative permittivity metamaterials[J]. Applied Physics Letters, 88, 041109(2006).

    [84] O’Hara J F, Chen H T, Taylor A J et al. Split-ring resonator enhanced terahertz antenna[C]. //Nonlinear Optics: Materials, Fundamentals and Applications 2007, July 30, 2007, Kona, Hawaii, United States, TuB2(2007).

    [85] Atwater H A, Polman A. Plasmonics for improved photovoltaic devices[J]. Nature Materials, 9, 205-213(2010).

    [86] Chettiar U K, Garcia R F, Maier S A et al. Enhancement of radiation from dielectric waveguides using resonant plasmonic coreshells[J]. Optics Express, 20, 16104-16112(2012).

    [87] Genevet P, Tetienne J P, Gatzogiannis E et al. Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings[J]. Nano Letters, 10, 4880-4883(2010).

    [88] Knight M W, Grady N K, Bardhan R et al. Nanoparticle-mediated coupling of light into a nanowire[J]. Nano Letters, 7, 2346-2350(2007).

    [89] Grady N K, Knight M W, Bardhan R et al. Optically-driven collapse of a plasmonic nanogap self-monitored by optical frequency mixing[J]. Nano Letters, 10, 1522-1528(2010).

    [90] Matsui T, Agrawal A, Nahata A et al. Transmission resonances through aperiodic arrays of subwavelength apertures[J]. Nature, 446, 517-521(2007).

    [91] Soukoulis C M, Wegener M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials[J]. Nature Photonics, 5, 523-530(2011).

    [92] Thompson R J, Siday T, Glass S et al. Optically thin hybrid cavity for terahertz photo-conductive detectors[J]. Applied Physics Letters, 110, 041105(2017).

    [93] Cao Y H, Liu Z Y, Minin O V et al. Deep subwavelength-scale light focusing and confinement in nanohole-structured mesoscale dielectric spheres[J]. Nanomaterials, 9, 186(2019).

    [94] Moitra P, Slovick B A, Li W et al. Large-scale all-dielectric metamaterial perfect reflectors[J]. ACS Photonics, 2, 692-698(2015).

    [95] Jahani S, Jacob Z. All-dielectric metamaterials[J]. Nature Nanotechnology, 11, 23-36(2016).

    [96] Genet C, Ebbesen T W. Light in tiny holes[J]. Nature, 445, 39-46(2007).

    [97] Park S G, Jin K H, Yi M et al. Enhancement of terahertz pulse emission by optical nanoantenna[J]. ACS Nano, 6, 2026-2031(2012).

    [98] Park S G, Choi Y, Oh Y J et al. Terahertz photoconductive antenna with metal nanoislands[J]. Optics Express, 20, 25530-25535(2012).

    [99] Jooshesh A, Smith L, Masnadi-Shirazi M et al. Nanoplasmonics enhanced terahertz sources[J]. Optics Express, 22, 27992-28001(2014).

    [100] Jooshesh A, Fesharaki F, Bahrami-Yekta V et al. Plasmon-enhanced LT-GaAs/AlAs heterostructure photoconductive antennas for sub-bandgap terahertz generation[J]. Optics Express, 25, 22140-22148(2017).

    [101] Fesharaki F, Jooshesh A, Bahrami-Yekta V et al. Plasmonic antireflection coating for photoconductive terahertz generation[J]. ACS Photonics, 4, 1350-1354(2017).

    [102] Jooshesh A, Bahrami-Yekta V, Zhang J et al. Plasmon-enhanced below bandgap photoconductive terahertz generation and detection[J]. Nano Letters, 15, 8306-8310(2015).

    [103] Rämer J M, Ospald F, von Freymann G et al. Generation and detection of terahertz radiation up to 4.5 THz by low-temperature grown GaAs photoconductive antennas excited at 1560 nm[J]. Applied Physics Letters, 103, 021119(2013).

    [104] Thompson R J, Siday T, Glass S et al. Optically thin hybrid cavity for terahertz photo-conductive detectors[J]. Applied Physics Letters, 110, 041105(2017).

    [105] Mitrofanov O, Brener I, Luk T S et al. Photoconductive terahertz near-field detector with a hybrid nanoantenna array cavity[J]. ACS Photonics, 2, 1763-1768(2015).

    [106] Bashirpour M, Ghorbani S, Kolahdouz M et al. Significant performance improvement of a terahertz photoconductive antenna using a hybrid structure[J]. RSC Advances, 7, 53010-53017(2017).

    [107] Ghorbani S, Bashirpour M, Poursafar J et al. Thin film tandem nanoplasmonic photoconductive antenna for high performance terahertz detection[J]. Superlattices and Microstructures, 120, 598-604(2018).

    [108] Burford N M, Evans M J. El-Shenawee M O. Plasmonic nanodisk thin-film terahertz photoconductive antenna[J]. IEEE Transactions on Terahertz Science and Technology, 8, 237-247(2018).

    [109] Gric T, Gorodetsky A, Trofimov A et al. Tunable plasmonic properties and absorption enhancement in terahertz photoconductive antenna based on optimized plasmonic nanostructures[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 39, 1028-1038(2018).

    [110] Lepeshov S, Gorodetsky A, Krasnok A et al. Boosting terahertz photoconductive antenna performance with optimised plasmonic nanostructures[J]. Scientific Reports, 8, 6624(2018).

    [111] Bhattacharya A, Ghindani D, Prabhu S S. Enhanced terahertz emission bandwidth from photoconductive antenna by manipulating carrier dynamics of semiconducting substrate with embedded plasmonic metasurface[J]. Optics Express, 27, 30272-30279(2019).

    [112] Bashirpour M, Poursafar J, Kolahdouz M et al. Terahertz radiation enhancement in dipole photoconductive antenna on LT-GaAs using a gold plasmonic nanodisk array[J]. Optics & Laser Technology, 120, 105726(2019).

    [113] Murakami H, Takarada T, Tonouchi M. Low-temperature GaAs-based plasmonic photoconductive terahertz detector with Au nano-islands[J]. Photonics Research, 8, 1448-1456(2020).

    [114] Jiang R, Cheng S, Li Q Y et al. Terahertz radiation enhancement based on LT-GaAs by optimized plasmonic nanostructure[J]. Laser Physics, 31, 036203(2021).

    [115] Tong J C, Suo F, Zhang T N et al. Plasmonic semiconductor nanogroove array enhanced broad spectral band millimetre and terahertz wave detection[J]. Light: Science & Applications, 10, 58(2021).

    [116] Heshmat B, Pahlevaninezhad H, Pang Y J et al. Nanoplasmonic terahertz photoconductive switch on GaAs[J]. Nano Letters, 12, 6255-6259(2012).

    [117] Berry C W, Wang N, Hashemi M R et al. Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes[J]. Nature Communications, 4, 1622(2013).

    [118] Yang S H, Hashemi M R, Berry C W et al. 7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes[J]. IEEE Transactions on Terahertz Science and Technology, 4, 575-581(2014).

    [119] Moon K, Lee I M, Shin J H et al. Bias field tailored plasmonic nano-electrode for high-power terahertz photonic devices[J]. Scientific Reports, 5, 13817(2015).

    [120] Moon K, Lee E S, Lee I M et al. Photo-conductive detection of continuous THz waves via manipulated ultrafast process in nanostructures[J]. Applied Physics Letters, 112, 031102(2018).

    [121] Singh A, Welsch M, Winnerl S et al. Improved electrode design for interdigitated large-area photoconductive terahertz emitters[J]. Optics Express, 27, 13108-13115(2019).

    [122] Li M D, Lu G Z. Application of sub-wavelength grating electrodes in photo conductive antennas[J]. Plasmonics, 14, 807-813(2019).

    [123] Lavrukhin D V, Yachmenev A E, Glinskiy L et al. Terahertz photoconductive emitter with dielectric-embedded high-aspect-ratio plasmonic grating for operation with low-power optical pumps[C]. //2019 International Workshop on Antenna Technology (IWAT), March 3-6, 2019, Miami, FL, USA., 21-24(2019).

    [124] Khorshidi M, Zafari S, Dadashzadeh G. Increase in terahertz radiation power of plasmonic photoconductive antennas by embedding buried three-stepped rods in electrodes[J]. Optics Express, 27, 22327-22338(2019).

    [125] Singh A, Welsch M, Winnerl S et al. Non-plasmonic improvement in photoconductive THz emitters using nano- and micro-structured electrodes[J]. Optics Express, 28, 35490-35497(2020).

    [126] Berry C W, Hashemi M R, Jarrahi M. Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas[J]. Applied Physics Letters, 104, 081122(2014).

    [127] Yardimci N T, Yang S H, Berry C W et al. High-power terahertz generation using large-area plasmonic photoconductive emitters[J]. IEEE Transactions on Terahertz Science and Technology, 5, 223-229(2015).

    [128] Yardimci N T, Cakmakyapan S, Hemmati S et al. Significant efficiency enhancement in photoconductive terahertz emitters through three-dimensional light confinement[C]. //2017 IEEE MTT-S International Microwave Symposium (IMS), June 4-9, 2017, Honololu, HI, USA., 435-438(2017).

    [129] Yardimci N T, Lu H, Jarrahi M. High power telecommunication-compatible photoconductive terahertz emitters based on plasmonic nano-antenna arrays[J]. Applied Physics Letters, 109, 191103(2016).

    [130] Yardimci N T, Jarrahi M. High sensitivity terahertz detection through large-area plasmonic nano-antenna arrays[J]. Scientific Reports, 7, 42667(2017).

    [131] Yardimci N T, Turan D, Cakmakyapan S et al. A high-responsivity and broadband photoconductive terahertz detector based on a plasmonic nanocavity[J]. Applied Physics Letters, 113, 251102(2018).

    [132] Turan D, Yardimci N T, Jarrahi M. Plasmonics-enhanced photoconductive terahertz detector pumped by Ytterbium-doped fiber laser[J]. Optics Express, 28, 3835-3845(2020).

    [133] Lu P K, Turan D, Jarrahi M. High-sensitivity telecommunication-compatible photoconductive terahertz detection through carrier transit time reduction[J]. Optics Express, 28, 26324-26335(2020).

    [134] Balow A M, Khatir M, Amiri N. Terahertz detection using large-area plasmonic nano-antenna arrays based on stepped strips[J]. Optik, 228, 165886(2021).

    [135] Tanoto H, Teng J H, Wu Q Y et al. Nano-antenna in a photoconductive photomixer for highly efficient continuous wave terahertz emission[J]. Scientific Reports, 3, 2824(2013).

    [136] Berry C W, Hashemi M R, Preu S et al. Plasmonics enhanced photomixing for generating quasi-continuous-wave frequency-tunable terahertz radiation[J]. Optics Letters, 39, 4522-4524(2014).

    [137] Berry C W, Hashemi M R, Preu S et al. High power terahertz generation using 1550 nm plasmonic photomixers[J]. Applied Physics Letters, 105, 011121(2014).

    [138] Yang S H, Jarrahi M. Frequency-tunable continuous-wave terahertz sources based on GaAs plasmonic photomixers[J]. Applied Physics Letters, 107, 131111(2015).

    [139] Yang S H, Jarrahi M. Spectral characteristics of terahertz radiation from plasmonic photomixers[J]. Optics Express, 23, 28522-28530(2015).

    [140] Khorshidi M, Dadashzadeh G. Dielectric structure with periodic strips for increasing radiation power of photoconductive antennas: theoretical analysis[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 38, 609-629(2017).

    [141] Mitrofanov O, Siday T, Thompson R J et al. Efficient photoconductive terahertz detector with all-dielectric optical metasurface[J]. APL Photonics, 3, 051703(2018).

    [142] Siday T, Vabishchevich P P, Hale L et al. Terahertz detection with perfectly-absorbing photoconductive metasurface[J]. Nano Letters, 19, 2888-2896(2019).

    [143] Wang K M, Gu J Q, Shi W Q et al. All-dielectric nanograting for increasing terahertz radiation power of photoconductive antennas[J]. Optics Express, 28, 19144-19151(2020).

    [144] Takano K, Chiyoda Y, Nishida T et al. Optical switching of terahertz radiation from meta-atom-loaded photoconductive antennas[J]. Applied Physics Letters, 99, 161114(2011).

    [145] Liu S C, Shou X, Nahata A. Coherent detection of multiband terahertz radiation using a surface plasmon-polariton based photoconductive antenna[J]. IEEE Transactions on Terahertz Science and Technology, 1, 412-415(2011).

    [146] Shi X C, Wang K M, Gu J Q et al. Photoconductive meta-antenna enabling terahertz amplitude spectrum manipulation[J]. Advanced Photonics Research, 2, 2000036(2021).

    [147] Zhao Z Y, Zheng X B, Ollmann Z et al. Terahertz selective emission enhancement from a metasurface-coupled photoconductive emitter in quasi-near-field zone[J]. Plasmonics, 15, 263-269(2020).

    [148] Hu D, Wang X K, Feng S F et al. Ultrathin terahertz planar elements[J]. Advanced Optical Materials, 1, 186-191(2013).

    [149] Jiang X Y, Ye J S, He J W et al. An ultrathin terahertz lens with axial long focal depth based on metasurfaces[J]. Optics Express, 21, 30030-30038(2013).

    [150] Wang Q, Zhang X Q, Xu Y H et al. A broadband metasurface-based terahertz flat-lens array[J]. Advanced Optical Materials, 3, 779-785(2015).

    [151] Wang S, Wang X K, Kan Q et al. Spin-selected focusing and imaging based on metasurface lens[J]. Optics Express, 23, 26434-26441(2015).

    [152] Luo J, Yu H L, Song M W et al. Highly efficient wavefront manipulation in terahertz based on plasmonic gradient metasurfaces[J]. Optics Letters, 39, 2229-2231(2014).

    [153] Yang Q L, Gu J Q, Wang D Y et al. Efficient flat metasurface lens for terahertz imaging[J]. Optics Express, 22, 25931-25939(2014).

    [154] Yang Q L, Gu J Q, Xu Y H et al. Broadband and robust metalens with nonlinear phase profiles for efficient terahertz wave control[J]. Advanced Optical Materials, 5, 1601084(2017).

    [155] Yu Q, Gu J Q, Yang Q L et al. All-dielectric meta-lens designed for photoconductive terahertz antennas[J]. IEEE Photonics Journal, 9, 1-9(2017).

    [156] Jia D, Tian Y, Ma W et al. Transmissive terahertz metalens with full phase control based on a dielectric metasurface[J]. Optics Letters, 42, 4494-4497(2017).

    [157] Jiang X, Chen H, Li Z et al. All-dielectric metalens for terahertz wave imaging[J]. Optics Express, 26, 14132-14142(2018).

    [158] Cheng Q Q, Ma M L, Yu D et al. Broadband achromatic metalens in terahertz regime[J]. Science Bulletin, 64, 1525-1531(2019).

    [159] Gao Y F, Gu J Q, Jia R D et al. Polarization independent achromatic meta-lens designed for the terahertz domain[J]. Frontiers in Physics, 8, 606693(2020).

    [160] Fakhar B H, Ghazialsharif M, Abrishamian M S. Graphene hybrid waveguide stimulation using a photoconductive terahertz generator[J]. Optics Letters, 45, 2407-2410(2020).

    [161] Doha M H, Batista J I S, Rawwagah A F et al. Integration of multi-layer black phosphorus into photoconductive antennas for THz emission[J]. Journal of Applied Physics, 128, 063104(2020).

    [162] Zhou Y X, Huang Y Y, Jin Y P et al. Terahertz properties of graphene and graphene-based terahertz devices[J]. Chinese Journal of Lasers, 46, 0614011(2019).

    [163] Kang M, Feng T H, Wang H T et al. Wave front engineering from an array of thin aperture antennas[J]. Optics Express, 20, 15882-15890(2012).

    [164] Sun S L, He Q, Xiao S Y et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 11, 426-431(2012).

    [165] Yu N, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).

    Jianqiang Gu, Kemeng Wang, Yi Xu, Chunmei Ouyang, Zhen Tian, Jiaguang Han, Weili Zhang. Metamaterials-Based Terahertz Photoconductive Antennas[J]. Chinese Journal of Lasers, 2021, 48(19): 1914004
    Download Citation