[2] Du J, Liu S Q, Zhang B, et al. Dual-bridging with adversarial noise generation for domain adaptive rPPG estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023, 10355-10364.
[3] Birla L, Gupta P. AND-rPPG: A novel denoising-rPPG network for improving remote heart rate estimation[J]. Computers in Biology and Medicine, 2022, 141: 105146.
[8] Jihyoung L, Matsumura K, Yamakoshi K I, et al. Comparison between red, green and blue light reflection photoplethysmography for heart rate monitoring during motion[C]//2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, July3-7, 2013, Osaka, Japan. New York: IEEE, 2013, 13812620.
[9] Wu T, Blazek V, Schmitt H J. Photoplethysmography imaging: a newnoninvasive and noncontactmethod for mapping of the dermal perfusion changes[C]//European Conference on Biomedical Optics (2000), November 1, 2000, Amsterdam, Netherlands. Washington: Optical Society of America, 2000, 4163: 62-70.
[10] Verkruysse W, Svaasand L O, Nelson J S. Remote plethysmographic imaging using ambient light[J]. Optics Express, 2008, 16(26): 21434-21445.
[11] Poh M Z, McDuff D J, Picard R W. Non-contact, automated cardiac pulse measurements using videoimaging and blind source separation[J]. Optics Express, 2010, 18(10): 10762-10774.
[12] McDuff D, Gontarek S, Picard R W. Improvementsin remote cardiopulmonary measurement using a fiveband digital camera[J]. IEEE Transactions on Biomedical Engineering, 2014, 61(10): 2593-2601.
[13] Zhang Q, Zhou Y M, Song S, et al. Heart RateExtraction based on Near-infraredCamera: Towards Driver State Monitoring[J]. IEEE Access, 2018, 6: 33076-33087.
[14] Yang Z, Wang H, Lu F. Assessment of DeepLearning-based Heart Rate Estimation using Remote Photoplethysmography under Different Illuminations[J]. IEEE Transactions on Human-Machine Systems, 2022, 52(6): 1236-1246.
[15] Schrumpf F, Frenzel P, Aust C, et al. Assessmentof non-invasive blood pressure prediction from PPG and rPPG signals usingdeep learning[J]. Sensors, 2021, 21(18): 6022.
[16] Yue Z, Ding S, Yang S, et al. Deep super-resolution network for rPPG information recovery and noncontact heart rate estimation[J]. IEEE Transactions on Instrumentation and Measurement, 202l, 70: 1-11.
[17] Deng Y, Kumar A. Standoff heart rate estimationfrom video: A review[J]. Mobile Multimedia/lmage Processing, Security, and Applications 2020, 2020, 11399: 16-29.
[19] Wang F, Li Z, He F, et al. Feature learning viewpoint of AdaBoost and a new algorithm[J]. IEEEAccess, 2019, 7: 149890-149899.
[20] Choirina P, Rosiani U D. Detection and Tracking of Face Location in the Pre-processing Stage of Recognition of Micro Expressions Using the Kanade-Lucas-Tomasi (KLT) Method[J]. Jurnal Information Polinema, 2020, 7(1): 73-78.
[21] Anowar F, Sadaoui S, Selim B. Conceptual and empirical comparison of dimensionality reduction algorithms (pca, kpca, lda, mds, svd, lle, isomap, leica, t-sne)[J]. Computer Science Review, 2021, 40: 100378.
[22] Haugg F, Elgendi M, Menon C. GRGB rPPG: An Efficient Low-Complexity Remote Photoplethysmography-Based Algorithm for Heart Rate Estimation[J]. Bioengineering, 2023, 10(2): 243.
[23] Lucarini S, Segurado J. DBFFT: A displacement-based FFT approach for non-linear homogenizationof the mechanical behavior[J]. International Journal of Engineering Science, 2019, 144: 103131.