• High Power Laser and Particle Beams
  • Vol. 35, Issue 5, 052002 (2023)
Xiaoli Liu, Jianmin Qi, and Yanyun Chu
Author Affiliations
  • Institute of Nuclear Physics and Chemistry, CAEP, Mianyang 621900, China
  • show less
    DOI: 10.11884/HPLPB202335.220280 Cite this Article
    Xiaoli Liu, Jianmin Qi, Yanyun Chu. Effect of load plasma disturbance on radiation temperature in Z-pinch dynamic hohlraum[J]. High Power Laser and Particle Beams, 2023, 35(5): 052002 Copy Citation Text show less
    References

    [1] Du Xiangwan, Ye Qizhen, Xu Mi, . Research on technology directions and development roadmap of nuclear energy[J]. Strategic Study of CAE, 20, 17-24(2018).

    [2] Peng Xianjue, Wang Zhen. Conceptual research on Z-pinch driven fusion-fission hybrid reactor[J]. High Power Laser and Particle Beams, 26, 090201(2014).

    [3] Peng Xianjue, Liu Cheng’an, Shi Xueming. Nuclear energy future Zpinch driven fusion fission hybrid react[M]. Beijing: National Defense Industry Press, 2019

    [4] Slutz S A, Bailey J E, Chandler G A, et al. Dynamic hohlraum driven inertial fusion capsules[J]. Physics of Plasmas, 10, 1875-1882(2003).

    [5] Slutz S A, Peterson K J, Vesey R A, et al. Integrated two-dimensional simulations of dynamic hohlraum driven inertial fusion capsule implosions[J]. Physics of Plasmas, 13, 102701(2006).

    [6] Sanford T W L, Lemke R W, Mock R C, et al. Dynamics and characteristics of a 215-eV dynamic-hohlraum X-ray source on Z[J]. Physics of Plasmas, 9, 3573-3594(2002).

    [7] Bennett G R, Cuneo M E, Vesey R A, et al. Symmetric inertial-confinement-fusion-capsule implosions in a double-Z-pinch-driven hohlraum[J]. Physical Review Letters, 89, 245002(2002).

    [8] Sanford T W L, Olson R E, Mock R C, et al. Dynamics of a Z-pinch X-ray source for heating inertial-confinement-fusion relevant hohlraums to 120–160 eV[J]. Physics of Plasmas, 7, 4669-4682(2000).

    [9] Rochau G A, Bailey J E, Chandler G A, et al. High performance capsule implosions driven by the Z-pinch dynamic hohlraum[J]. Plasma Physics and Controlled Fusion, 49, B591-B600(2007).

    [10] Ning Cheng, Feng Zhixing, Xuechuang. Basic acteristics of kiic energy transfer in the dynamic hohlraums of Zpinch. Acta Physica Sinica , 2014, 63(12): 125208.

    [11] Ding Ning, Wu Jiming, Dai Zihuan, . Numerical simulation analysis of Z-pinch implosion using MARED code[J]. Acta Physica Sinica, 59, 8707-8716(2010).

    [12] Xiao Delong, Sun Shunkai, Xue Chuang, . Numerical studies on the formation process of Z-pinch dynamic hohlruams and key issues of optimizing dynamic hohlraum radiation[J]. Acta Physica Sinica, 64, 235203(2015).

    [13] Xiao Delong, Dai Zihuan, Sun Shunkai, . Numerical studies on dynamics of Z-pinch dynamic hohlraum driven target implosion[J]. Acta Physica Sinica, 67, 025203(2018).

    [14] He Kaihui, Feng Kaiming, Li Qiang, . Preliminary study of Rayleigh-Taylor instability in wire-array Z-pinch[J]. Nuclear Fusion and Plasma Physics, 20, 241-245(2000).

    [15] Shumlak U, Roderick N F. Mitigation of the Rayleigh–Taylor instability by sheared axial flows[J]. Physics of Plasmas, 5, 2384-2389(1998).

    [16] Zhang Yang, Ding Ning. The effect of axial flow on the stability in the Z-pinch[J]. Acta Physica Sinica, 55, 2333-2339(2006).

    [17] Duan Yaoyong, Guo Yonghui, Wang Wensheng, . Numerical investigations of Z-pinch plasma instabilities[J]. Acta Physica Sinica, 53, 3429-3434(2004).

    [18] Wang Guanqiong, Xiao Delong, Dan Jiakun, et al. Preliminary investigation on electrothermal instabilities in early phases of cylindrical foil implosions on primary test stand facility[J]. Chinese Physics B, 28, 025203(2019).

    [19] Chen Zhongwang, Ning Cheng. Simulation of forming process of Z-pinch dynamic hohlraum based on the program MULTI2D-Z[J]. Acta Physica Sinica, 66, 125202(2017).

    [20] Brownell J H, Bowers R L, McLenithan K D, et al. Radiation environments produced by plasma Z-pinch stagnation on central targets[J]. Physics of Plasmas, 5, 2071-2080(1998).

    [21] Xu Binbin. Research on the radiation temperature radiation unifmity in Zpinch dynamic hohlraum the fluid instability in ablat[D]. Changsha: National University of Defense Technology, 2017

    [22] Fryxell B, Olson K, Ricker P, et al. FLASH: an adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes[J]. The Astrophysical Journal Supplement Series, 131, 273-334(2000).

    [23] Long Chengde, Zhao Bin, Yuan Peng, . Simulation of expansion of aluminum plasmas produced by a small focal spot nanosecond laser irradiation[J]. High Power Laser and Particle Beams, 26, 102005(2014).

    [24] Tzeferacos P, Fatenejad M, Flocke N, et al. FLASH magnetohydrodynamic simulations of shock-generated magnetic field experiments[J]. High Energy Density Physics, 8, 322-328(2012).

    [25] Sun Wei, Lü Chong, Lei Zhu, . Numerical study of effect of magnetic field on laser-driven Rayleigh-Taylor instability[J]. Acta Physica Sinica, 71, 154701(2022).

    [26] Faik S, Tauschwitz A, Iosilevskiy I. The equation of state package FEOS for high energy density matter[J]. Computer Physics Communications, 227, 117-125(2018).

    [27] Kemp A J, Meyer-ter-Vehn J. An equation of state code for hot dense matter, based on the QEOS description[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 415, 674-676(1998).

    [28] Zhao Kaige, Xue Chuang, Wang Lifeng, . Improved thin layer model of classical Rayleigh-Taylor instability for the deformation of interface[J]. Acta Physica Sinica, 67, 094701(2018).

    Xiaoli Liu, Jianmin Qi, Yanyun Chu. Effect of load plasma disturbance on radiation temperature in Z-pinch dynamic hohlraum[J]. High Power Laser and Particle Beams, 2023, 35(5): 052002
    Download Citation