• Photonics Research
  • Vol. 12, Issue 6, 1328 (2024)
Tianzhu Zhang1,2,†, Jia Huang1,†, Xingyu Zhang1, Chaomeng Ding1,2..., Huiqin Yu1, You Xiao1, Chaolin Lv3, Xiaoyu Liu1, Zhen Wang1,2, Lixing You1,2, Xiaoming Xie1,2 and Hao Li1,2,*|Show fewer author(s)
Author Affiliations
  • 1Shanghai Key Laboratory of Superconductor Integrated Circuit Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Photon Technology (Zhejiang) Co., Ltd., Jiaxing 314100, China
  • show less
    DOI: 10.1364/PRJ.522714 Cite this Article Set citation alerts
    Tianzhu Zhang, Jia Huang, Xingyu Zhang, Chaomeng Ding, Huiqin Yu, You Xiao, Chaolin Lv, Xiaoyu Liu, Zhen Wang, Lixing You, Xiaoming Xie, Hao Li, "Superconducting single-photon detector with a speed of 5 GHz and a photon number resolution of 61," Photonics Res. 12, 1328 (2024) Copy Citation Text show less
    References

    [1] W. Wu, M. Chen, Z. Zhang. Overview of deep space laser communication. Sci. China Inf. Sci., 61, 040301(2018).

    [2] F. Xu, X. Ma, Q. Zhang. Secure quantum key distribution with realistic devices. Rev. Mod. Phys., 92, 025002(2020).

    [3] T. Horikiri, T. Kobayashi. Decoy state quantum key distribution with a photon number resolved heralded single photon source. Phys. Rev. A, 73, 032331(2006).

    [4] Y. H. Deng, Y. C. Gu, H. L. Liu. Gaussian boson sampling with pseudo-photon-number resolving detectors and quantum computational advantage. arXiv(2023).

    [5] J. M. Arrazola, V. Bergholm, K. Brádler. Quantum circuits with many photons on a programmable nanophotonic chip. Nature, 591, 54-60(2021).

    [6] L. S. Madsen, F. Laudenbach, M. F. Askarani. Quantum computational advantage with a programmable photonic processor. Nature, 606, 75-81(2022).

    [7] E. Knill, R. Laflamme, G. J. Milburn. A scheme for efficient quantum computation with linear optics. Nature, 409, 46-52(2001).

    [8] Z. L. Yuan, A. R. Dixon, J. F. Dynes. Gigahertz quantum key distribution with InGaAs avalanche photodiodes. Appl. Phys. Lett., 92, 201104(2008).

    [9] G. B. Ko, J. S. Lee. Performance characterization of high quantum efficiency metal package photomultiplier tubes for time‐of‐flight and high‐resolution PET applications. Med. Phys., 42, 510-520(2015).

    [10] P. Hu, H. Li, L. You. Detecting single infrared photons toward optimal system detection efficiency. Opt. Express, 28, 36884-36891(2020).

    [11] J. Chang, J. W. N. Los, J. O. Pearl-Tenorio. Detecting telecom single photons with (99.5+0.5−2.07)% system detection efficiency and high time resolution. APL Photonics, 6, 036114(2021).

    [12] D. V. Reddy, R. R. Nerem, S. W. Nam. Superconducting nanowire single-photon detectors with 98% system detection efficiency at 1550 nm. Optica, 7, 1649-1653(2020).

    [13] J. M. Xiong, W. J. Zhang, G. Z. Xu. Reducing current crowding in meander superconducting strip single-photon detectors by thickening bends. Supercond. Sci. Technol., 35, 055015(2022).

    [14] H. Shibata, K. Shimizu, H. Takesue. Superconducting nanowire single-photon detector with ultralow dark count rate using cold optical filters. Appl. Phys. Express, 6, 072801(2013).

    [15] B. Korzh, Q. Y. Zhao, J. P. Allmaras. Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector. Nat. Photonics, 14, 250-255(2020).

    [16] Y. Liu, W. J. Zhang, C. Jiang. Experimental twin-field quantum key distribution over 1000 km fiber distance. Phys. Rev. Lett., 130, 210801(2023).

    [17] J. P. Chen, C. Zhang, Y. Liu. Quantum key distribution over 658 km fiber with distributed vibration sensing. Phys. Rev. Lett., 128, 180502(2022).

    [18] W. Li, L. Zhang, Y. Lu. Twin-field quantum key distribution without phase locking. Phys. Rev. Lett., 130, 250802(2023).

    [19] H. S. Zhong, H. Wang, Y. H. Deng. Quantum computational advantage using photons. Science, 370, 1460-1463(2020).

    [20] H. S. Zhong, Y. H. Deng, J. Qin. Phase-programmable Gaussian boson sampling using stimulated squeezed light. Phys. Rev. Lett., 127, 180502(2021).

    [21] L. K. Shalm, E. Meyer-Scott, B. G. Christensen. Strong loophole-free test of local realism. Phys. Rev. Lett., 115, 250402(2015).

    [22] C. Zhang, W. Zhang, J. Huang. NbN superconducting nanowire single-photon detector with an active area of 300 μm-in-diameter. AIP Adv., 9, 075214(2019).

    [23] J. Huang, W. Zhang, L. You. High speed superconducting nanowire single-photon detector with nine interleaved nanowires. Supercond. Sci. Technol., 31, 074001(2018).

    [24] W. Zhang, J. Huang, C. Zhang. A 16-pixel interleaved superconducting nanowire single-photon detector array with a maximum count rate exceeding 1.5 GHz. IEEE Trans. Appl. Supercond., 29, 2200204(2019).

    [25] W. Li, L. Zhang, H. Tan. High-rate quantum key distribution exceeding 110 Mb s–1. Nat. Photonics, 17, 416-421(2023).

    [26] G. V. Resta, L. Stasi, M. Perrenoud. Gigahertz detection rates and dynamic photon-number resolution with superconducting nanowire arrays. Nano Lett., 23, 6018-6026(2023).

    [27] L. You, H. Li, W. Zhang. Superconducting nanowire single-photon detector on dielectric optical films for visible and near infrared wavelengths. Supercond. Sci. Technol., 30, 084008(2017).

    [28] J. Huang, X. Zhang, W. Zhang. Improving photon number resolvability of a superconducting nanowire detector array using a level comparator circuit. arXiv(2023).

    [29] T. Wen, J. Huang, J. Huang. Improved response model of a superconducting nanowire array for high photon count rate communication. Opt. Commun., 537, 129437(2023).

    [30] I. Craiciu, B. Korzh, A. D. Beyer. High-speed detection of 1550 nm single photons with superconducting nanowire detectors. Optica, 10, 183-190(2023).

    [31] F. Mattioli, Z. Zhou, A. Gaggero. Photon-counting and analog operation of a 24-pixel photon number resolving detector based on superconducting nanowires. Opt. Express, 24, 9067-9076(2016).

    [32] R. Cheng, Y. Zhou, S. Wang. A 100-pixel photon-number-resolving detector unveiling photon statistics. Nat. Photonics, 17, 112-119(2023).

    [33] D. Zhu, M. Colangelo, C. Chen. Resolving photon numbers using a superconducting nanowire with impedance-matching taper. Nano Lett., 20, 3858-3863(2020).

    [34] T. Schapeler, N. Lamberty, T. Hummel. How well can superconducting nanowire single-photon detectors resolve photon number?. arXiv(2023).

    [35] J. W. N. Los, M. Sidorova, B. L. Rodriguez. High-performance photon number resolving detectors for 850–950 nm wavelengths. arXiv(2024).

    [36] L.-D. Kong, T.-Z. Zhang, X.-Y. Liu. Large-inductance superconducting microstrip photon detector enabling 10 photon-number resolution. Adv. Photonics, 6, 016004(2024).

    [37] J. Lin, Y. Sun, W. Wu. High-speed photon-number-resolving detection via a GHz-gated SiPM. Opt. Express, 30, 7501-7510(2022).

    [38] K. Huang, Y. Wang, J. Fang. Mid-infrared photon counting and resolving via efficient frequency upconversion. Photonics Res., 9, 259-265(2021).

    [39] L. Stasi, G. Gras, R. Berrazouane. Fast high-efficiency photon-number-resolving parallel superconducting nanowire single-photon detector. Phys. Rev. Appl., 19, 064041(2023).

    [40] A. J. Kerman, D. Rosenberg, R. J. Molnar. Readout of superconducting nanowire single-photon detectors at high count rates. J. Appl. Phys., 113, 144511(2013).

    Tianzhu Zhang, Jia Huang, Xingyu Zhang, Chaomeng Ding, Huiqin Yu, You Xiao, Chaolin Lv, Xiaoyu Liu, Zhen Wang, Lixing You, Xiaoming Xie, Hao Li, "Superconducting single-photon detector with a speed of 5 GHz and a photon number resolution of 61," Photonics Res. 12, 1328 (2024)
    Download Citation