• Matter and Radiation at Extremes
  • Vol. 9, Issue 5, 057803 (2024)
Jing Yang1,*, Xinxin Wang2, Liang Xu1, Qiannan Wang1..., Yi Sun1, Jiangtao Li1, Lin Zhang1, Yinghua Li1, Yuying Yu1, Pei Wang2, Qiang Wu1 and Jianbo Hu1|Show fewer author(s)
Author Affiliations
  • 1Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China
  • 2Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
  • show less
    DOI: 10.1063/5.0200242 Cite this Article
    Jing Yang, Xinxin Wang, Liang Xu, Qiannan Wang, Yi Sun, Jiangtao Li, Lin Zhang, Yinghua Li, Yuying Yu, Pei Wang, Qiang Wu, Jianbo Hu. Direct visualization of laser-driven dynamic fragmentation in tin by in situ x-ray diffraction[J]. Matter and Radiation at Extremes, 2024, 9(5): 057803 Copy Citation Text show less
    References

    [1] D.Curran. Dynamic failure of solids. Phys. Rep., 147, 253-388(1987).

    [2] T.Antoun, D. R.Curran, G. I.Kanel, S. V.Razorenov, L.Seaman, A. V.Utkin. Spall Fracture(2003).

    [3] M. A.Meyers. Dynamic Behavior of Materials(1994).

    [4] L.Soulard. Molecular dynamics study of the micro-spallation. Eur. Phys. J. D, 50, 241-251(2008).

    [5] Y. B.Bazarov, V. V.Burtsev, S. V.Erunov, V. V.Glushikhin, I. A.Kalashnik, E. V.Kulakov, S. A.Lobastov, A. L.Mikhaĭlov, V. A.Ogorodnikov, A. V.Romanov, A. V.Rudnev, B. I.Tkachenko, V. A.Tsyganov. Detecting the ejection of particles from the free surface of a shock-loaded sample. J. Exp. Theor. Phys., 109, 530-535(2009).

    [6] A. N.Stroh. A theory of the fracture of metals. Adv. Phys., 6, 418-465(1957).

    [7] V. A.Golubev, A. G.Ivanov, N. I.Kryukov, A. L.Mikhailov, V. A.Ogorodnikov, A. P.Tolochko. Particle ejection from the shocked free surface of metals and diagnostic methods for these particles. Combust. Explos. Shock Waves, 34, 696-700(1998).

    [8] Y. L.Bian, Y.Cai, H. W.Chai, H. L.Xie, X. H.Yao, S. J.Ye. Compression and spallation properties of polyethylene terephthalate under plate impact loading. Int. J. Mech. Sci., 211, 106736(2021).

    [9] T.de Rességuier, S.Hemery, G. I.Kanel, E.Lescoute, S. V.Razorenov, P.Villechaise. Spall fracture and twinning in laser shock-loaded single-crystal magnesium. J. Appl. Phys., 121, 165104(2017).

    [10] S. J.Ali, J.Eggert, T.Haxhimali, J. A. K.Horwitz, K. K.Mackay, B.Morgan, F.Najjar, H. S.Park, Y.Ping, H. G.Rinderknecht, A. M.Saunders, C. V.Stan. Experimental observations of laser-driven tin ejecta microjet interactions. Phys. Rev. Lett., 127, 155002(2021).

    [11] H.Bao, S.Qi, Y.Shen. Numerical investigation on spall fracture in a metallic material caused by laser shock peening. Mater. Today Commun., 33, 104343(2022).

    [12] A. M.He, P.Wang, X. X.Wang, T. T.Zhou. Spall damage in single crystal tin under shock wave loading: A molecular dynamics simulation. Mech. Mater., 160, 103991(2021).

    [13] M.Boustie, T.de Rességuier, A.Dragon, P.Severin, L.Signor. Spallation in laser shock-loaded tin below and just above melting on release. J. Appl. Phys., 102, 073535(2007).

    [14] G. I.Kanel. Spall fracture: Methodological aspects, mechanisms and governing factors. Int. J. Fract., 163, 173-191(2010).

    [15] E. B.Zaretsky. Shock response of iron between 143 and 1275 K. J. Appl. Phys., 106, 023510(2009).

    [16] A.Bogatch, V. E.Fortov, D. E.Grady, G. I.Kanel, S. V.Razorenov, A. V.Utkin. Spall fracture properties of aluminum and magnesium at high temperatures. J. Appl. Phys., 79, 8310-8317(1996).

    [17] V. K.Golubev, S. A.Novikov, V. A.Sinitsyn, Y. S.Sobolev. Influence of temperature on the critical conditions of spalling fracture of metals. J. Appl. Mech. Tech. Phys., 21, 551-555(1981).

    [18] A.Bogatch, D. E.Grady, G. I.Kanel, S. V.Razorenov, A. V.Utkin. Simulation of spall fracture of aluminum and magnesium over a wide range of load duration and temperature. Int. J. Impact Eng., 20, 467-478(1997).

    [19] E. L.Christiansen, J. H.Kerr. Ballistic limit equations for spacecraft shielding. Int. J. Impact Eng., 26, 93-104(2001).

    [20] M.Hassani-Gangaraj, K. A.Nelson, C. A.Schuh, D.Veysset. Melt-driven erosion in microparticle impact. Nat. Commun., 9, 005077(2018).

    [21] L. C.Cai, J. M.Cheng, X. M.Li, Y. H.Li, X. P.Ye, L.Zhang, Z. G.Zhang. Exploration of the fragmentation of laser shock-melted aluminum using x-ray backlighting. AIP Adv., 6, 055311(2016).

    [22] E.Brambrink, T.de Rességuier, B.Jodar, E.Lescoute, D.Loison, G.Prudhomme, C.Roland, A.Sollier. Picosecond x-ray radiography of microjets expanding from laser shock-loaded grooves. J. Appl. Phys., 124, 065106(2018).

    [23] M. C.Akin, D. B.Bober, K. K.Mackay, F. M.Najjar. Understanding the evolution of liquid and solid microjets from grooved Sn and Cu samples using radiography. J. Appl. Phys., 130, 045901(2021).

    [24] W. T.Buttler, J. J.Charonko, J. C.Cooley, J. J. Goett, M.Grover, J. E.Hammerberg, B. M.LaLone, R. K.Schulze, J. D.Schwarzkopf, D. G.Sheppardet?al.. Understanding the transport and break up of reactive ejecta. Physica D, 415, 132787(2021).

    [25] T.De Rességuier, A.Dragon, E.Lescoute, D.Loison, G.Roy, L.Signor. Experimental study of dynamic fragmentation of shockloaded metals below and above melting. EPJ Web Conf., 6, 39012(2010).

    [26] C.Dai, J.Hu, J.Li, H.Tan, X.Zhou. Shock-induced bct-bcc transition and melting of tin identified by sound velocity measurements. J. Appl. Phys., 104, 083520(2008).

    [27] A.He, P.Wang, B.Wu, F.Wu, H.Wu, Y.Zhu. Molecular dynamics simulations of ejecta production from sinusoidal tin surfaces under supported and unsupported shocks. AIP Adv., 8, 045002(2018).

    [28] M. C.Akin, D. B.Bober, J.Lind, A. M.Saunders. X-ray diffraction from shock driven Sn microjets. J. Appl. Phys., 132, 185901(2022).

    [29] M. T.Beason, B. J.Jensen. Constraining the release of Sn to the ambient melting point following shock loading using time-resolved x-ray diffraction. J. Appl. Phys., 132, 245107(2022).

    [30] W. T.Buttler, J. C.Cooley, M.Grover, J. E.Hammerberg, B. M.La Lone, S. K.Lamoreaux, A.Llobet, R.Manzanares, R. K.Schulze, J. D.Schwarzkopfet?al.. Ejecta transport, breakup and conversion. J. Dyn. Behav. Mater., 3, 334-345(2017).

    [31] P. M.Goodwin, T. M.Hartsfield, J. M.Lang, L. R.Veeseret?al.. The temperatures of ejecta transporting in vacuum and gases. J. Appl. Phys., 131, 195104(2022).

    [32] F.Buy, F.Llorca, C.Voltz. Thermodynamically based equation of state for shock wave studies: Application to the design of experiments on tin. AIP Conf. Proc., 845, 41-44(2006).

    [33] H.Chen, C.Dai, Y.Gan, J.Gao, H.Geng, J.Li, Y.Sun, Y.Wang, F.Wu, S.Xiang, J.Yang. Automated calibrated modeling method of multiphase equations of states: Applied to tin. Chin. J. High Pressure Phys., 37, 021301(2022).

    [34] L.Burakovsky, S. D.Crockett, C. W.Greeff, D. A.Rehn, D. G.Sheppard. Multiphase tin equation of state using density functional theory. Phys. Rev. B, 103, 184102(2021).

    [35] P. L.Héreil, C.Mabire. Shock induced polymorphic transition and melting of tin. AIP Conf. Proc., 505, 93-96(2000).

    [36] A.Benuzzi-Mounaix, A.Berlioux, S.Brygoo, A.Denoeud, J.-A.Hernandez, F.Lefevre, A.Ravasio, A.Sollier, L.Videau, T.Vinciet?al.. X-ray powder diffraction in reflection geometry on multi-beam kJ-type laser facilities. Rev. Sci. Instrum., 92, 013902(2021).

    [37] M. F.Ahmed, J. H.Eggert, A. C.Fisher, D. H.Kalantar, N. D.Masters, C. A.Smith, R. F.Smith, R. M.Vignes. TARDIS-C: A target diagnostic for measuring material structure at high pressure. J. Phys.: Conf. Ser., 717, 012115(2016).

    [38] G. K.Anderson, X. F.Corlis, R. F.Harrison, L. C.Haynes, T. R.King, W. Z.Osborne, C. R.Phipps, K. C.Spicochi, H. S.Steele, T. P.Turner, G. W.York. Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers. J. Appl. Phys., 64, 1083-1096(1988).

    [39] Y.Ding, J.Feng, S.Li, W.Liao, Y.Wang, Y.Yu. Experimental study of ablation parameters of aluminium target by 0.35 μm laser. Acta Opt. Sin., 18, 895-900(1998).

    [40] J.Chen, S.Chen, Y.Ren, H.Sheng, Z.Wang, Q.Wu, L.Xu, W.Yang, J.Zeng, X.Zuo. Folded network and structural transition in molten tin. Nat. Commun., 13, 126(2022).

    [41] H.Aoki, K.Hoshino, Y.Ishii, T.Itami, T.Kamiyama, T.Masaki, S.Munejiri, Y.Senda, F.Shimojo. Structure of liquid Sn over a wide temperature range from neutron scattering experiments and first-principles molecular dynamics simulation: A comparison to liquid Pb. Phys. Rev. B, 67, 064201(2003).

    [42] C.Dai, J.Hu, J.Li, H.Tan, X.Zhou. Successive phase transitions of tin under shock compression. Appl. Phys. Lett., 92, 111905(2008).

    [43] M.Boustie, T.de Rességuier, A.Dragon, F.Llorca, G.Roy, L.Signor. Experimental investigation of liquid spall in laser shock-loaded tin. J. Appl. Phys., 101, 013506(2007).

    [44] T.de Rességuier, A.Dragon, E.Lescoute, D.Loison. Laser driven compression to investigate shock-induced melting of metals. Metals, 4, 490-502(2014).

    [45] S. J.Ali, J. H.Eggert, T.Haxhimali, K. K.Mackay, B. E.Morgan, F. M.Najjar, H. S.Park, Y.Ping, H. G.Rinderknecht, A. M.Saunders, C. V.Stan. Hydrodynamic computations of high-power laser drives generating metal ejecta jets from surface grooves. J. Appl. Phys., 128, 215904(2020).

    [46] S. A.Dyachkov, S. Y.Grigoryev, D. K.Ilnitsky, N. A.Inogamov, V. O.Kompanets, M. S.Krivokorytov, B. V.Lakatosh, K. P.Migdal, A. Y.Vinokhodov, V. V.Zhakhovskyet?al.. Expansion and fragmentation of a liquid-metal droplet by a short laser pulse. Phys. Rev. Appl., 10, 064009(2018).

    [47] S. V.Razorenov. Influence of structural factors on the strength properties of aluminum alloys under shock wave loading. Matter Radiat. Extremes, 3, 145-158(2018).

    [48] Y.Cheng, H.Duan, W.Liu, Y.Liu, H.Sui, L.Yu. Theoretical models of void nucleation and growth for ductile metals under dynamic loading: A review. Matter Radiat. Extremes, 7, 018201(2022).

    [49] S. J.Ali, M.Kawasaki, M. A.Meyers, H.-S.Park, G.Righi, R. E.Rudd, C. J.Ruestes, C. V.Stan. Towards the ultimate strength of iron: Spalling through laser shock. Acta Mater., 215, 117072(2021).

    [50] N.Amadou, T.de Rességuier. Phase transformations and plasticity in single-crystal iron from shock compression to spall fracture. Phys. Rev. B, 108, 174109(2023).

    [51] R.Grover. Liquid metal equation of state based on scaling. J. Chem. Phys., 55, 3435-3441(1971).

    [52] S.Plimpton. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys., 117, 1-19(1995).

    [53] V. V.Dremov, O.Durand, G. V.Ionov, F. A.Sapozhnikov, L.Soulard. The Embedded Atom Model and large-scale MD simulation of tin under shock loading. J. Phys.: Conf. Ser., 500, 032017(2014).

    Jing Yang, Xinxin Wang, Liang Xu, Qiannan Wang, Yi Sun, Jiangtao Li, Lin Zhang, Yinghua Li, Yuying Yu, Pei Wang, Qiang Wu, Jianbo Hu. Direct visualization of laser-driven dynamic fragmentation in tin by in situ x-ray diffraction[J]. Matter and Radiation at Extremes, 2024, 9(5): 057803
    Download Citation