• Electronics Optics & Control
  • Vol. 32, Issue 3, 21 (2025)
GE Chao1, ZHANG Xinyuan1, WANG Hong1, and LUN Zhixin2
Author Affiliations
  • 1School of Electrical Engineering,North China University of Science and Technology,Tangshan 063000,China
  • 2Computer Centre of Tangshan University,Tangshan 063000,China
  • show less
    DOI: 10.3969/j.issn.1671-637x.2025.03.004 Cite this Article
    GE Chao, ZHANG Xinyuan, WANG Hong, LUN Zhixin. Path Planning Based on Improved RRT-Connect Algorithm[J]. Electronics Optics & Control, 2025, 32(3): 21 Copy Citation Text show less
    References

    [1] WEIDINGER F,BOYSEN N,BRISKORN D. Storage assignment with rack moving mobile robots in KIVA warehouses [J]. Transportation Science,2018,52(6):1479-1495.

    [2] NAMBA T,YAMADA Y. Risks of deep reinforcement learning applied to fall prevention assist by autonomous mobile robots in the hospital [J]. Big Data Cognitive Computing,2018,2(2):55188802.

    [4] HONG Z H,SUN P F,TONG X H. Improved A-star algorithm for long-distance off-road path planning using terrain data map [J]. ISPRS International Journal of Geo-Information,2021,10:785.

    [6] LAVALLE S M,KUFFNER J J. Randomized kinodynamic planning [J]. The International Journal of Robotics Research,2001,20(5):378-400.

    [7] MASHAYEKHI R,IDRIS M Y I,ANISI M H,et al. Hybrid RRT: a semi-dual-tree RRT-based motion planner [J]. IEEE Access,2020,8: 18658-18668.

    [8] ZENG D Q,CHEN H T,YU Y Q,et al. Microrobot path planning based on the multi-module DWA method in crossing dense obstacle scenario [J]. Micromachines,2023,14(6):1181.

    [9] JIANG H,LI S Z,ZHANG J Y,et al. Efficient state representation with artificial potential fields for reinforcement learning [J]. Complex & Intelligent Systems,2023,9:4911-4922.

    [12] KARAMAN S,FRAZZOLI E. Sampling-based algorithms for optimal motion planning [J]. The International Journal of Robotics Research,2011,30(7):846-894.

    [13] GAMMELL J D,SRINIVASA S S,BARFOOT T D. Informed RRT*: optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic [C]//2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago: IEEE,2014: 2997-3004.

    [14] KUFFNER J J,LAVALLE S M. RRT-Connect: an efficient approach to single-query path planning [C]//IEEE International Conference on Robotics and Automation (ICRA). San Francisco: IEEE,2000: 995-1001.

    [15] KLEMM S,OBERLNDER J,HERMANN A,et al. RRT*-Connect: faster,asymptotically optimal motion planning [C]//2015 IEEE International Conference on Robotics and Biomimetics (ROBIO). Zhuhai: IEEE,2015: 1670-1677.