• High Power Laser and Particle Beams
  • Vol. 34, Issue 5, 056001 (2022)
Yao He, Gang Li, Qiping Chen, Rui Hu, Jian Deng, Yuchuan Yang, Jun Tu, and Shuming Peng*
Author Affiliations
  • Institute of Nuclear Physics and Chemistry, CAEP, Mianyang 621900, China
  • show less
    DOI: 10.11884/HPLPB202234.210507 Cite this Article
    Yao He, Gang Li, Qiping Chen, Rui Hu, Jian Deng, Yuchuan Yang, Jun Tu, Shuming Peng. Actinide nuclear targets preparation and applications[J]. High Power Laser and Particle Beams, 2022, 34(5): 056001 Copy Citation Text show less
    References

    [1] Schumann D, Sibbens G, Stolarz A, et al. ANITA (Advanced Network for Isotope and TArget laboratories) – The urgent need for a European target preparation network[J]. AIP Conference Proceedings, 1962, 020001(2018).

    [2] Eberhardt K, Düllmann C E, Haas R, et al. Actinide targets for fundamental research in nuclear physics[J]. AIP Conference Proceedings, 1962, 030009(2018).

    [3] Chadwick M B, Capote R, Trkov A, et al. CIELO collaboration summary results: international evaluations of neutron reactions on uranium, plutonium, iron, oxygen and hydrogen[J]. Nuclear Data Sheets, 148, 189-213(2018).

    [4] Roberto J B, Alexander C W, Boll R A, et al. Actinide targets for the synthesis of super-heavy elements[J]. Nuclear Physics A, 944, 99-116(2015).

    [5] Letourneau A, Bringer O, Chabod S P, et al. Recent developments on micrometric fission chambers dedicated for high neutron fluxes[J]. IEEE Transactions on Nuclear Science, 58, 1913-1920(2011).

    [7] Stolarz A, Eykens R, Moens A, et al. Actinide target preparation at IRMM—then and now[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 613, 351-356(2010).

    [8] Verdingh V. The preparation of layers by electrospraying and electrophoresis[J]. Nuclear Instruments and Methods, 102, 497-500(1972).

    [9] Pauwels J, Tjoonk J. Spraypainting of deposits for nuclear measurements[J]. Nuclear Instruments and Methods, 167, 77-79(1979).

    [10] Baker J D, McGrath C A, Hill T S, et al. Actinide targets for neutron cross section measurements[J]. Journal of Radioanalytical and Nuclear Chemistry, 276, 555-560(2008).

    [11] Oh J S, Warwick P E, Croudace I W, et al. Evaluation of three electrodeposition procedures for uranium, plutonium and americium[J]. Applied Radiation and Isotopes, 87, 233-237(2014).

    [12] Crespo M T. A review of electrodeposition methods for the preparation of alpha-radiation sources[J]. Applied Radiation and Isotopes, 70, 210-215(2012).

    [13] Sibbens G, Moens A, Eykens R, et al. Preparation of 240Pu and 242Pu targets to improve cross-section measurements for advanced reactors and fuel cycles[J]. Journal of Radioanalytical and Nuclear Chemistry, 299, 1093-1098(2014).

    [14] Bond E M, Moody W A, Bredeweg T A. Production of double-sided targets by electrodeposition: initial evaluation and optimization of performance[J]. Journal of Radioanalytical and Nuclear Chemistry, 296, 847-851(2013).

    [15] Sibbens G, Ernstberger M, Gouder T, et al. Morphological and compositional study of 238U thin film targets for nuclear experiments[J]. AIP Conference Proceedings, 1962, 030007(2018).

    [16] Vascon A, Santi S, Isse A A, et al. Smooth crack-free targets for nuclear applications produced by molecular plating[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 714, 163-175(2013).

    [17] Vascon A, Santi S, Isse A A, et al. Elucidation of constant current density molecular plating[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 696, 180-191(2012).

    [18] Vascon A, Wiehl N, Runke J, et al. Improving material properties and performance of nuclear targets for transmutation-relevant experiments[J]. Journal of Radioanalytical and Nuclear Chemistry, 305, 913-919(2015).

    [19] Vascon A, Runke J, Trautmann N, et al. Quantitative molecular plating of large-area 242Pu targets with improved layer properties[J]. Applied Radiation and Isotopes, 95, 36-43(2015).

    [20] He Yao, Han Lianhuan, Wang Chao, et al. Molecular plating of actinide compounds on wafer-scale aluminum substrate[J]. Journal of Alloys and Compounds, 878, 160393(2021).

    [21] Sibbens G, Moens A, Vanleeuw D, et al. Multi-layer 235UF4-6LiF–Au targets for high-resolution fission fragment measurements[J]. Applied Radiation and Isotopes, 87, 229-232(2014).

    [22] Vanleeuw D, Sibbens G, Plompen A. Determination of the hydrogen content of thick tristearin layers prepared by physical vapour deposition[J]. Journal of Radioanalytical and Nuclear Chemistry, 305, 957-962(2015).

    [23] Gursky J C, Povelites J G. Fifth annual conference of the International Nuclear Target Development Society[R]. Los Alamos Scientific Lab N Mex (USA), 1977.

    [24] Stolarz A. Target preparation for research with charged projectiles[J]. Journal of Radioanalytical and Nuclear Chemistry, 299, 913-931(2014).

    [25] Vanleeuw D, Lewis D, Moens A, et al. Implementation of new integrated evaporation equipment for the preparation of 238U targets and improvement of the deposition process[J]. AIP Conference Proceedings, 1962, 030008(2018).

    [28] Drapchinsky L V, Shpakov V I. Preparation of actinide targets by radio-frequency sputtering[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 362, 100-103(1995).

    [29] Jia Q, McCleskey T M, Burrell A K, et al. Polymer-assisted deposition of metal-oxide films[J]. Nature Materials, 3, 529-532(2004).

    [30] Scott B L, Joyce J J, Durakiewicz T D, et al. High quality epitaxial thin films of actinide oxides, carbides, and nitrides: advancing understanding of electronic structure of f-element materials[J]. Coordination Chemistry Reviews, 266/267, 137-154(2014).

    [31] Ali M N, Garcia M A, Parsons-Moss T, et al. Polymer-assisted deposition of homogeneous metal oxide films to produce nuclear targets[J]. Nature Protocols, 5, 1440-1446(2010).

    [32] Oganessian Y. Heaviest nuclei from 48Ca-induced reactions[J]. Journal of Physics G:Nuclear and Particle Physics, 34, R165-R242(2007).

    [33] Maugeri E A, Heinitz S, Dressler R, et al. Preparation of 7Be targets for nuclear astrophysics research[J]. Journal of Instrumentation, 12, P02016(2017).

    [34] Haas R, Lohse S, Düllmann C E, et al. Development and characterization of a Drop-on-Demand inkjet printing system for nuclear target fabrication[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 874, 43-49(2017).

    [35] von der Wense L C, Seiferle B, Schneider C, et al. The concept of laser-based conversion electron Mössbauer spectroscopy for a precise energy determination of 229mTh[J]. Hyperfine Interactions, 240, 23(2019).

    [36] Rau S, Heiße F, Köhler-Langes F, et al. Penning trap mass measurements of the deuteron and the HD+ molecular ion[J]. Nature, 585, 43-47(2020).

    [37] Bredeweg T A. Nuclear science at LANL: facilities capabilities[C]Proceedings of the 9th Trilab Nuclear Data Wkshop. Los Alamos: Los Alamos National Lab. (LANL), 2018.

    [38] Liebe D, Eberhardt K, Hartmann W, et al. The application of neutron activation analysis, scanning electron microscope, and radiographic imaging for the characterization of electrochemically deposited layers of lanthanide and actinide elements[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 590, 145-150(2008).

    [40] Wang Liyuan. Condensation Rn222 source absolute measurement based on the small solid angle method[D]. Nanchang: East China University of Technology, 2018

    [41] Denecke B, Eykens R, Pauwels J, et al. Characterization of actinide targets by low solid-angle alpha particle counting[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 438, 124-130(1999).

    [42] Arinc A, Parfitt M J, Keightley J D, et al. Defined solid angle alpha counting at NPL[J]. Applied Radiation and Isotopes, 109, 198-204(2016).

    [43] Ko Y G, Lim J M, Choi G S, et al. Characterizations of electrodeposited uranium layer on stainless steel disc[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 487, 121-130(2015).

    [44] Sadi S, Paulenova A, Watson P R, et al. Growth and surface morphology of uranium films during molecular plating[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 655, 80-84(2011).

    [45] Sibbens G, Moens A, Vanleeuw D, et al. Nuclear targets within the project of solving CHAllenges in Nuclear DAta[J]. EPJ Web of Conferences, 146, 03022(2017).

    [46] Henderson R A, Gostic J M, BurkeJ T, et al. Electrodeposition of uranium plutonium on thin carbon titanium substrates[R]. LLNLPROC471497, 2011.

    [47] Ayranov M, Schumann D. Preparation of 26Al, 59Ni, 44Ti, 53Mn and 60Fe from a proton irradiated copper beam dump[J]. Journal of Radioanalytical and Nuclear Chemistry, 286, 649-654(2010).

    [48] Schumann D, Neuhausen J, Dillmann I, et al. Preparation of a 60Fe target for nuclear astrophysics experiments[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 613, 347-350(2010).

    [49] Fowler M M, Gursky J C, Wilhelmy J B. Preparation of actinide targets and sources using nonaqueous electrodeposition[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 303, 99-101(1991).

    [50] Roman A R, Zhao X, Bond E M, et al. 2017 rept f new LANL physical vap deposition capability[R]. Los Alamos: Los Alamos National Lab, 2017.

    [51] Greene J P, Ahmad I. Molecular plating of actinides on thin backings[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 590, 131-133(2008).

    [52] FitzPatrick J R, Bond E, Slemmons A, et al. Preparation of americium targets for nuclear chemistry experiments at DANCE[J]. Journal of Radioanalytical and Nuclear Chemistry, 276, 561-566(2008).

    [53] Heffner M, Asner D M, Baker R G, et al. A time projection chamber for high accuracy and precision fission cross-section measurements[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 759, 50-64(2014).

    [54] Geppert-Kleinrath V, Tovesson F, Barrett J S, et al. Fission fragment angular anisotropy in neutron-induced fission of 235U measured with a time projection chamber[J]. Physical Review C, 99, 064619(2019).

    [55] Loveland W. High quality actinide targets[J]. Journal of Radioanalytical and Nuclear Chemistry, 307, 1591-1594(2016).

    [60] Yang Chunli, Wu Junde, Su Shuxin, et al. The preparation of Th232 target by molecular plating method[C]Progress Rept on Nuclear Science Technology in China (Vol. 1). Proceedings of Academic Annual Meeting of China Nuclear Society in 2009, No. 6Radiochemical. Beijing: Chinese Nuclear Society, 2009

    [61] Sun Xiaoyi, Mao Guoshu, Huang Kun, et al. The preparation of smallarea Pu targets[C]Abstracts of the 3rd National Youth Symposium on Nuclear Chemistry Radiochemistry. Nanning: Chinese Chemical Society, 2015

    [65] Wen Jie, Yang Yiwei, Wen Zhongwei, et al. Measurement of the U-238/U-235 fission cross section ratio at CSNS – Back-n WNS[J]. Annals of Nuclear Energy, 140, 107301(2020).

    [66] Ren Zhizhou, Yang Yiwei, Wen Jie, et al. Measurement of the 236U(n, f) cross section for neutron energies from 0.4 MeV to 40 MeV from the back-streaming white neutron beam at the China Spallation Neutron Source[J]. Physical Review C, 102, 034604(2020).

    [67] Bernstein L A, Brown D A, Koning A J, et al. Our future nuclear data needs[J]. Annual Review of Nuclear and Particle Science, 69, 109-136(2019).

    [68] Reichenberger M A, Nichols D M, Stevenson S R, et al. Fabrication and testing of a 4-node micro-pocket fission detector array for the Kansas State University TRIGA Mk. II research nuclear reactor[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 862, 8-17(2017).

    [69] Reichenberger M A, Ito T, Ugorowski P B, et al. Electrodeposition of uranium and thorium onto small platinum electrodes[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 812, 12-16(2016).

    Yao He, Gang Li, Qiping Chen, Rui Hu, Jian Deng, Yuchuan Yang, Jun Tu, Shuming Peng. Actinide nuclear targets preparation and applications[J]. High Power Laser and Particle Beams, 2022, 34(5): 056001
    Download Citation