• Frontiers of Optoelectronics
  • Vol. 10, Issue 1, 18 (2017)
Chao CHEN1, David C. BOBELA2, Ye YANG2, Shuaicheng LU1, Kai ZENG1, Cong GE1, Bo YANG1, Liang GAO1, Yang ZHAO1, Matthew C. BEARD2, and Jiang TANG1、*
Author Affiliations
  • 1Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, China
  • 2Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
  • show less
    DOI: 10.1007/s12200-017-0702-z Cite this Article
    Chao CHEN, David C. BOBELA, Ye YANG, Shuaicheng LU, Kai ZENG, Cong GE, Bo YANG, Liang GAO, Yang ZHAO, Matthew C. BEARD, Jiang TANG. Characterization of basic physical properties of Sb2Se3 and its relevance for photovoltaics[J]. Frontiers of Optoelectronics, 2017, 10(1): 18 Copy Citation Text show less
    References

    [1] Petzelt J, Grigas J. Far infrared dielectric dispersion in Sb2S3, Bi2S3 and Sb2Se3 single crystals. Ferroelectrics, 1973, 5(1): 59–68.

    [2] Zhou Y, Leng M, Xia Z, Zhong J, Song H, Liu X, Yang B, Zhang J, Chen J, Zhou K, Han J, Cheng Y, Tang J. Solution-processed antimony selenide heterojunction solar cells. Advanced Energy Materials, 2014, 4(8): 1301846.

    [3] Chen C, Li W, Zhou Y, Chen C, Luo M, Liu X, Zeng K, Yang B, Zhang C, Han J, Tang J. Optical properties of amorphous and polycrystalline Sb2Se3 thin films prepared by thermal evaporation. Applied Physics Letters, 2015, 107(4): 043905.

    [4] Ghosh G. The Sb-Se (antimony-selenium) system. Journal of Phase Equilibria, 1993, 14(6): 753–763.

    [5] Zhou Y, Wang L, Chen S, Qin S, Liu X, Chen J, Xue D J, Luo M, Cao Y, Cheng Y, Sargent E H, Tang J. Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries. Nature Photonics, 2015, 9(6): 409–415.

    [6] Luo M, Leng M, Liu X, Chen J, Chen C, Qin S, Tang J. Thermal evaporation and characterization of superstrate CdS/Sb2Se3 solar cells. Applied Physics Letters, 2014, 104(17): 173904.

    [7] Liu X, Chen J, Luo M, Leng M, Xia Z, Zhou Y, Qin S, Xue D J, Lv L, Huang H, Niu D, Tang J. Thermal evaporation and characterization of Sb2Se3 thin film for substrate Sb2Se3/CdS solar cells. ACS Applied Materials & Interfaces, 2014, 6(13): 10687–10695.

    [8] Leng M, Luo M, Chen C, Qin S, Chen J, Zhong J, Tang J. Selenization of Sb2Se3 absorber layer: an efficient step to improve device performance of CdS/Sb2Se3 solar cells. Applied Physics Letters, 2014, 105(8): 083905.

    [9] Liu X, Chen C, Wang L, Zhong J, Luo M, Chen J, Xue D J, Li D, Zhou Y, Tang J. Improving the performance of Sb2Se3 thin film solar cells over 4% by controlled addition of oxygen during film deposition. Progress in Photovoltaics: Research and Applications, 2015, 23(12): 1828–1836.

    [10] Sinsermsuksakul P, Sun L, Lee S W, Park H H, Kim S B, Yang C, Gordon R G. Overcoming efficiency limitations of SnS-based solar cells. Advanced Energy Materials, 2014, 4(15): 1400496.

    [11] Solar Frontier Achieves World Record Thin-Film Solar Cell Efficiency: 22.3%, http://www.solar-frontier.com/eng/news/2015/ C051171.html (accessed: November, 2016).

    [12] First Solar pushes CdTe cell efficiency to record 22.1%, http://www. pv-tech.org/news/first-solar-pushes-cdte-cell-efficiency-to-record- 22.1 (accessed: November, 2016).

    [13] Wang W,Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y, Mitzi D B. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Advanced Energy Materials, 2014, 4(7): 1301465.

    [14] Sai H, Matsui T, Koida T, Matsubara K, Kondo M, Sugiyama S, Katayama H, Takeuchi Y, Yoshida I. Triple-junction thin-film silicon solar cell fabricated on periodically textured substrate with a stabilized efficiency of 13.6%. Applied Physics Letters, 2015, 106 (21): 213902.

    [15] Black J, Conwell EM, Seigle L, Spencer CW. Electrical and optical properties of someM2 V-BN3 VI-B semiconductors. Journal of Physics and Chemistry of Solids, 1957, 2(3): 240–251.

    [16] Benjamin S L, de Groot C H, Hector A L, Huang R, Koukharenko E, Levason W, Reid G. Chemical vapour deposition of antimony chalcogenides with positional and orientational control: precursor design and substrate selectivity. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2015, 3(2): 423–430.

    [17] Gilbert L R, Van Pelt B, Wood C. The thermal activation energy of crystalline Sb2Se3. Journal of Physics and Chemistry of Solids, 1974, 35(12): 1629–1632.

    [18] Ma J, Su T, LiMD, DuW, Huang J, Guan X, Phillips D L. How and when does an unusual and efficient photoredox reaction of 2-(1- hydroxyethyl) 9,10-anthraquinone occur A combined timeresolved spectroscopic and DFT study. Journal of the American Chemical Society, 2012, 134(36): 14858–14868.

    [19] Jackson W B, Amer N M, Boccara A C, Fournier D. Photothermal deflection spectroscopy and detection. Applied Optics, 1981, 20(8): 1333–1344.

    [20] Madelung O. Semiconductors: Data Handbook. New York: Springer Science & Business Media, 2012.

    [21] Engel M, Kunze F, Lupascu D C, Benson N, Schmechel R. Reduced exciton binding energy in organic semiconductors: tailoring the Coulomb interaction. Physica Status Solidi (RRL)-Rapid Research Letters, 2012, 6(2): 68–70.

    [22] Pavlica E, Bratina G. Time-of-flight mobility of charge carriers in position-dependent electric field between coplanar electrodes.Applied Physics Letters, 2012, 101(9): 093304.

    [23] Haynes J R, Shockley W. The mobility and life of injected holes and electrons in Germanium. Physical Review, 1951, 81(5): 835–843.

    [24] Supplemental Material at http://link.springer.com/article/10.1007/ s12200-017-0702-z for the detailed derivation of Eq. (3) and Hall mobility formula, biased IQE, PDS and SCLC, CV measurements, and the inter-atom distances in Sb2Se3.

    [25] Yang Y, Rodríguez-Córdoba W, Lian T. Ultrafast charge separation and recombination dynamics in lead sulfide quantum dot-methylene blue complexes probed by electron and hole intraband transitions. Journal of the American Chemical Society, 2011, 133(24): 9246– 9249.

    [26] Yang Y, Ostrowski D P, France R M, Zhu K, van de Lagemaat J, Luther J M, Beard M C. Observation of a hot-phonon bottleneck in lead-iodide perovskites. Nature Photonics, 2016, 10(1): 53–59.

    [27] Shi H, Yan R, Bertolazzi S, Brivio J, Gao B, Kis A, Jena D, Xing H G, Huang L. Exciton dynamics in suspended monolayer and fewlayer MoS2 2D crystals. ACS Nano, 2013, 7(2): 1072–1080.

    [28] Gokmen T, Gunawan O, Mitzi D B. Minority carrier diffusion length extraction in Cu2ZnSn(Se,S)4 solar cells. Journal of Applied Physics, 2013, 114(11): 114511.

    [29] Liu X X, Sites J R. Solar-cell collection efficiency and its variation with voltage. Journal of Applied Physics, 1994, 75(1): 577–581.

    [30] Seto J Y W. The electrical properties of polycrystalline silicon films. Journal of Applied Physics, 1975, 46(12): 5247–5254.

    [31] Liu X, Xiao X, Yang Y, Xue D J, Li D, Chen C, Lu S, Gao L, He Y, C B M, Wang G, Chen S, Tang J. Enhanced Sb2Se3 solar cell performance through theory-guided defect control. Submitted to Progress in Photovoltaics: Research and Applications.

    [32] Mott N F, Davis E A. Electronic Processes in Non-Crystalline Materials. Oxford: Oxford University Press, 2012.

    [33] Guo B L, Chen Y H, Liu X J, Liu W C, Li A D. Optical and electrical properties study of sol-gel derived Cu2ZnSnS4 thin films for solar cells. AIP Advances, 2014, 4(9): 097115.

    [34] Walter T, Herberholz R, Müller C, Schock H W. Determination of defect distributions from admittance measurements and application to Cu(In,Ga)Se2 based heterojunctions. Journal of Applied Physics, 1996, 80(8): 4411–4420.

    [35] Bube R H. Trap density determination by space-charge-limited currents. Journal of Applied Physics, 1962, 33(5): 1733–1737.

    [36] Ritter D,Weiser K. Suppression of interference fringes in absorption measurements on thin films. Optics Communications, 1986, 57(5): 336–338.

    [37] Urbach F. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Physical Review, 1953, 92 (5): 1324.

    [38] Tumelero M A, Faccio R, Pasa A A. Unraveling the native conduction of trichalcogenides and it ideal band alignment for new photovoltaic interfaces. The Journal of Physical Chemistry C, 2016, 120(3): 1390–1399.

    [39] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342(6156): 341–344.

    [40] Burst J M, Duenow J N, Albin D S, Colegrove E, Reese M O, Aguiar J A, Jiang C S, Patel M K, Al-Jassim M M, Kuciauskas D. CdTe solar cells with open-circuit voltage breaking the 1 V barrier. Nature Energy, 2016, 1: 16015.

    [41] Todorov T K, Tang J, Bag S, Gunawan O, Gokmen T, Zhu Y, Mitzi D B. Beyond 11% efficiency: characteristics of state-of-the-art Cu2ZnSn (S, Se)4 solar cells. Advanced Energy Materials, 2013, 3 (1): 34–38.

    [42] Repins I, Contreras M, Romero M, Yan Y, Metzger W, Li J, Johnston S, Egaas B, DeHart C, Scharf J, McCandless B E, Noufi R. Characterization of 19.9%-efficient CIGS absorbers. In: Proceedings of 33rd IEEE Photovoltaic Specialists Conference, 2008, 1–6.

    [43] Jaramillo R, Sher M J, Ofori-Okai B K, Steinmann V, Yang C, Hartman K, Nelson K A, Lindenberg A M, Gordon R G, Buonassisi T. Transient terahertz photoconductivity measurements of minoritycarrier lifetime in tin sulfide thin films: advanced metrology for an early stage photovoltaic material. Journal of Applied Physics, 2016, 119(3): 035101.

    [44] Tang J, Kemp K W, Hoogland S, Jeong K S, Liu H, Levina L, Furukawa M, Wang X, Debnath R, Cha D, Chou K W, Fischer A, Amassian A, Asbury J B, Sargent E H. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nature Materials, 2011, 10(10): 765–771.

    [45] Saparov B, Sun J P, Meng W, Xiao Z, Duan H S, Gunawan O, Shin D, Hill I G, Yan Y, Mitzi D B. Thin-film deposition and characterization of a Sn-deficient perovskite derivative Cs2SnI6. Chemistry of Materials, 2016, 28(7): 2315–2322.

    [46] Tai K F, Gunawan O, Kuwahara M, Chen S, Mhaisalkar S G, Huan C H A, Mitzi D B. Fill factor losses in Cu2ZnSn (SxSe1 – x)4 solar cells: insights from physical and electrical characterization of devices and exfoliated films. Advanced Energy Materials, 2016, 6 (3): 1501609.

    [47] Song H, Zhan X, Li D, Zhou Y, Yang B, Zeng K, Zhong J, Miao X, Tang J. Rapid thermal evaporation of Bi2S3 layer for thin film photovoltaics. Solar Energy Materials and Solar Cells, 2016, 146: 1–7.

    [48] Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J. Electron-hole diffusion lengths> 175 mm in solution-grown CH3NH3PbI3 single crystals. Science, 2015, 347(6225): 967–970.

    [49] Ramakrishna Reddy K T, Koteswara Reddy N, Miles R W. Photovoltaic properties of SnS based solar cells. Solar Energy Materials and Solar Cells, 2006, 90(18–19): 3041–3046.

    [50] Kim G H, García de Arquer F P, Yoon Y J, Lan X, Liu M, Voznyy O, Jagadamma L K, Abbas A S, Yang Z, Fan F, Ip A H, Kanjanaboos P, Hoogland S, Kim J Y, Sargent E H. High-efficiency colloidal quantum dot photovoltaics via robust self-assembled monolayers. Nano Letters, 2015, 15(11): 7691–7696

    Chao CHEN, David C. BOBELA, Ye YANG, Shuaicheng LU, Kai ZENG, Cong GE, Bo YANG, Liang GAO, Yang ZHAO, Matthew C. BEARD, Jiang TANG. Characterization of basic physical properties of Sb2Se3 and its relevance for photovoltaics[J]. Frontiers of Optoelectronics, 2017, 10(1): 18
    Download Citation