• Bulletin of the Chinese Ceramic Society
  • Vol. 41, Issue 2, 401 (2022)
YANG Ningwei1、*, AN Liangcheng2, LYU Junmin1, LIU Suli2, WANG Zheng1, TUO Jie1, GAO Xinhua1, and FAN Subing1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: Cite this Article
    YANG Ningwei, AN Liangcheng, LYU Junmin, LIU Suli, WANG Zheng, TUO Jie, GAO Xinhua, FAN Subing. Research Progress of Zeolite Na-X Synthesis from Minerals and Waste Residues[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(2): 401 Copy Citation Text show less
    References

    [1] Database of zeolite structures[DB/OL]. (2021-07-16) [2021-08-05]. https://asia.iza-structure.org/IZA-SC/ftc_table.php.

    [2] NOZUE Y, AMAKO Y, KAWANO R, et al. Insulating state and metallic phase transition of heavily sodium-doped low-silica X (LSX) zeolites[J]. Journal of Physics and Chemistry of Solids, 2012, 73(12): 1538-1541.

    [3] MENAD K, FEDDAG A, JUHNA T. Copper(Ⅱ)-humic acid adsorption process using microporous-zeolite Na-X[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29(1): 1-16.

    [4] YANG T, HAN C Y, LIU H, et al. Synthesis of Na-X zeolite from low aluminum coal fly ash: characterization and high efficient As(V) removal[J]. Advanced Powder Technology, 2019, 30(1): 199-206.

    [5] CAMPO M C, BAPTISTA M C, RIBEIRO A M, et al. Gas phase SMB for propane/propylene separation using enhanced 13X zeolite beads[J]. Adsorption, 2014, 20(1): 61-75.

    [6] CAMPO M C, RIBEIRO A M, FERREIRA A, et al. New 13X zeolite for propylene/propane separation by vacuum swing adsorption[J]. Separation and Purification Technology, 2013, 103: 60-70.

    [7] BABAJIDE O, MUSYOKA N, PETRIK L, et al. Novel zeolite Na-X synthesized from fly ash as a heterogeneous catalyst in biodiesel production[J]. Catalysis Today, 2012, 190(1): 54-60.

    [8] BALLAV N, BISWAS M. A conductive composite of polythiophene with 13X-zeolite[J]. Materials Science and Engineering: B, 2006, 129(1/2/3): 270-272.

    [9] XU S Z, WANG R Z, WANG L W, et al. Performance characterizations and thermodynamic analysis of magnesium sulfate-impregnated zeolite 13X and activated alumina composite sorbents for thermal energy storage[J]. Energy, 2019, 167: 889-901.

    [10] HOLLER H, WIRSCHING U. Zeolite formation from fly ash[J]. Fortschritte der Minerals, 1985(63): 21-43.

    [11] SHIGEMOTO N, HAYASHI H, MIYAURA K. Selective formation of Na-X zeolite from coal fly ash by fusion with sodium hydroxide prior to hydrothermal reaction[J]. Journal of Materials Science, 1993, 28(17): 4781-4786.

    [12] TOUNSI H, MSEDDI S, DJEMAL S. Hydrothermal synthesis of Na-LTA, Na-X and HS zeolites from Tunisian sand and aluminum scraps[J]. Materials Science Forum, 2010, 636/637: 1389-1396.

    [13] ZHOU C Y, ALSHAMERI A, YAN C J, et al. Characteristics and evaluation of synthetic 13X zeolite from Yunnan's natural halloysite[J]. Journal of Porous Materials, 2013, 20(4): 587-594.

    [14] PURNOMO C W, SALIM C, HINODE H. Synthesis of pure Na-X and Na-A zeolite from bagasse fly ash[J]. Microporous and Mesoporous Materials, 2012, 162: 6-13.

    [15] MA Y N, YAN C J, ALSHAMERI A, et al. Synthesis and characterization of 13X zeolite from low-grade natural kaolin[J]. Advanced Powder Technology, 2014, 25(2): 495-499.

    [16] GHASEMI Z, YOUNESI H. Preparation of free-template nanometer-sized Na-A and -X zeolites from rice husk ash[J]. Waste and Biomass Valorization, 2012, 3(1): 61-74.

    [17] ANSARI M, AROUJALIAN A, RAISI A, et al. Preparation and characterization of nano-NaX zeolite by microwave assisted hydrothermal method[J]. Advanced Powder Technology, 2014, 25(2): 722-727.

    [18] CHEN Z W, LI S, YAN Y S. Synthesis of template-free zeolite nanocrystals by reverse microemulsion-microwave method[J]. Chemistry of Materials, 2005, 17(9): 2262-2266.

    [19] REN L, WU Q, YANG C, et al. Solvent-free synthesis of zeolites from solid raw materials[J]. Journal of the American Chemical Society, 2012, 134(37): 15173-15176.

    [20] WANG S B. Application of solid ash based catalysts in heterogeneous catalysis[J]. Environmental Science & Technology, 2008, 42(19): 7055-7063.

    [21] TOMECZEK J, PALUGNIOK H. Kinetics of mineral matter transformation during coal combustion[J]. Fuel, 2002, 81(10): 1251-1258.

    [22] SARKAR A, RANO R, MISHRA K K, et al. Particle size distribution profile of some Indian fly ash: a comparative study to assess their possible uses[J]. Fuel Processing Technology, 2005, 86(11): 1221-1238.

    [23] MAHUR A K, KUMAR R, MISHRA M, et al. An investigation of radon exhalation rate and estimation of radiation doses in coal and fly ash samples[J]. Applied Radiation and Isotopes, 2008, 66(3): 401-406.

    [24] SAIKIA N, KATO S, KOJIMA T. Compositions and leaching behaviours of combustion residues[J]. Fuel, 2006, 85(2): 264-271.

    [25] BHANGARE R C, TIWARI M, AJMAL P Y, et al. Distribution of natural radioactivity in coal and combustion residues of thermal power plants[J]. Journal of Radioanalytical and Nuclear Chemistry, 2014, 300(1): 17-22.

    [26] BLISSETT R S, ROWSON N A. A review of the multi-component utilisation of coal fly ash[J]. Fuel, 2012, 97: 1-23.

    [27] RAM L C, SRIVASTAVA N K, JHA S K, et al. Management of lignite fly ash for improving soil fertility and crop productivity[J]. Environmental Management, 2007, 40(3): 438-452.

    [28] EROL M, KKBAYRAK S, ERSOY-MERIBOYU A. Characterization of sintered coal fly ashes[J]. Fuel, 2008, 87(7): 1334-1340.

    [29] FONT O, QUEROL X, LPEZ-SOLER A, et al. Ge extraction from gasification fly ash[J]. Fuel, 2005, 84(11): 1384-1392.

    [30] BRIGATTI M F, GALAN E, THENG B. Chapter 2-structure and mineralogy of clay minerals[M]//Developments in clay Science, 2013, 5: 21-81.

    [31] BARRER R M. Hydrothermal chemistry of zeolites[M]. London and New York: Academic Press, 1982.

    [32] LUO P, ZHAO Y F, ZHANG B, et al. Study on the adsorption of neutral red from aqueous solution onto halloysite nanotubes[J]. Water Research, 2010, 44(5): 1489-1497.

    [33] TRIKKEL A, KUUSIK R, MARTINS A, et al. Utilization of Estonian oil shale semicoke[J]. Fuel Processing Technology, 2008, 89(8): 756-763.

    [34] SHAWABKEH R, AL-HARAHSHEH A, HAMI M, et al. Conversion of oil shale ash into zeolite for cadmium and lead removal from wastewater[J]. Fuel, 2004, 83(7/8): 981-985.

    [35] FERNANDES MACHADO N R C, MALACHINI MIOTTO D M. Synthesis of Na-A and -X zeolites from oil shale ash[J]. Fuel, 2005, 84(18): 2289-2294.

    [36] SUN L Y, GONG K C. Silicon-based materials from rice husks and their applications[J]. Industrial & Engineering Chemistry Research, 2001, 40(25): 5861-5877.

    [37] SUNDARAVADIVEL D, RAJENDRAN M. Recent studies of sugarcane bagasse ash in concrete and mortar: a review[J]. International Journal of Engineering Research and Technology, 2018, 7(4): IJERTV7IS040277.

    [38] AHMARUZZAMAN M. A review on the utilization of fly ash[J]. Progress in Energy and Combustion Science, 2010, 36(3): 327-363.

    [39] ANUWATTANA R, KHUMMONGKOL P. Conventional hydrothermal synthesis of Na-A zeolite from cupola slag and aluminum sludge[J]. Journal of Hazardous Materials, 2009, 166(1): 227-232.

    [40] CHEN Y G, XU T T, XIE C H, et al. Pure zeolite Na-P and Na-X prepared from coal fly ash under the effect of steric hindrance[J]. Journal of Chemical Technology & Biotechnology, 2016, 91(7): 2018-2025.

    [41] HUMS E, MUSYOKA N M, BASER H, et al. In-situ ultrasound study of the kinetics of formation of zeolites Na-A and Na-X from coal fly ash[J]. Research on Chemical Intermediates, 2015, 41(7): 4311-4326.

    [42] GOLBAD S, KHOSHNOUD P, KELENEY G, et al. Synthesis and characterization of highly crystalline Na-X zeolite from class F fly ash[J]. Water and Environment Journal, 2020, 34(3): 342-349.

    [43] SIVALINGAM S, SEN S. Optimization of synthesis parameters and characterization of coal fly ash derived microporous zeolite X[J]. Applied Surface Science, 2018, 455: 903-910.

    [44] HU T, GAO W, LIU X, et al. Synthesis of zeolites Na-A and Na-X from tablet compressed and calcinated coal fly ash[J]. Royal Society Open Science, 2017, 4(10): 170921.

    [45] TANAKA H, SAKAI Y, HINO R. Formation of Na-A and -X zeolites from waste solutions in conversion of coal fly ash to zeolites[J]. Materials Research Bulletin, 2002, 37(11): 1873-1884.

    [46] ZOU J J, GUO C B, WEI C D, et al. Synthesis of pure Na-X and Na-P zeolite from acid-extracting residues of CFB fly ash by a single-step hydrothermal method[J]. Materials Transactions, 2016, 57(5): 726-731.

    [47] BAI S X, ZHOU L M, CHANG Z B, et al. Synthesis of Na-X zeolite from Longkou oil shale ash by alkaline fusion hydrothermal method[J]. Carbon Resources Conversion, 2018, 1(3): 245-250.

    [48] KATSUKI H, KOMARNENI S. Synthesis of Na-A and/or Na-X zeolite/porous carbon composites from carbonized rice husk[J]. Journal of Solid State Chemistry, 2009, 182(7): 1749-1753.

    [49] MUSYOKA N M, PETRIK L F, HUMS E, et al. In situ ultrasonic monitoring of zeolite A crystallization from coal fly ash[J]. Catalysis Today, 2012, 190(1): 38-46.

    [50] AVRAMI M. Kinetics of phase change. I general theory[J]. The Journal of Chemical Physics, 1939, 7(12): 1103-1112.

    [51] ANDA , TATLIER M, SIRKECIOLU A, et al. Effects of ultrasound on zeolite A synthesis[J]. Microporous and Mesoporous Materials, 2005, 79(1/2/3): 225-233.

    [52] ASENCIO I, DORADO F, SNCHEZ P, et al. Calculation of kinetic parameters for crystallization processes[J]. The Chemical Educator, 2002, 7(1): 19-22.

    [53] HULBERT S F. Models for solid-state reactions in powdered compacts: a review[J]. Journal of the British Ceramics Society, 1969, 6: 11-20.

    [54] MUSYOKA N M, PETRIK L F, HUMS E, et al. In situ ultrasonic diagnostic of zeolite X crystallization with novel (hierarchical) morphology from coal fly ash[J]. Ultrasonics, 2014, 54(2): 537-543.

    [55] SHIGEMOTO N, SUGIYAMA S, HAYASHI H, et al. Characterization of Na-X, Na-A, and coal fly ash zeolites and their amorphous precursors by IR, MAS NMR and XPS[J]. Journal of Materials Science, 1995, 30(22): 5777-5783.

    [56] KUMAR A, NASKAR M K. Custard apple-shaped NaX zeolite with a large surface area derived from rice husk ash by a single-step template-free process[J]. Journal of Asian Ceramic Societies, 2019, 7(3): 355-360.

    [57] YU J H. Synthesis of zeolites[M]//Studies in Surface Science and Catalysis. Amsterdam: Elsevier, 2007: 39-103.

    [58] KACIREK H, LECHERT H. Rates of crystallization and a model for the growth of sodium-Y zeolites[J]. The Journal of Physical Chemistry, 1976, 80(12): 1291-1296.

    [59] CHANG H L, SHIH W H. Synthesis of zeolites A and X from fly ashes and their ion-exchange behavior with cobalt ions[J]. Industrial & Engineering Chemistry Research, 2000, 39(11): 4185-4191.

    [60] ZHANG X, TONG D Q, ZHAO J J, et al. Synthesis of NaX zeolite at room temperature and its characterization[J]. Materials Letters, 2013, 104: 80-83.

    [61] KOSANOVIC' C, JELIC' T A, BRONIC' J, et al. Chemically controlled particulate properties of zeolites: towards the face-less particles of zeolite A. Part 1. Influence of the batch molar ratio [SiO2/Al2O3]b on the size and shape of zeolite A crystals[J]. Microporous and Mesoporous Materials, 2011, 137(1/2/3): 72-82.

    [62] BELVISO C, CAVALCANTE F, JAVIER HUERTAS F, et al. The crystallisation of zeolite (X- and A-type) from fly ash at 25 ℃ in artificial sea water[J]. Microporous and Mesoporous Materials, 2012, 162: 115-121.

    [63] JHA V K, NAGAE M, DE MATSUDA M, et al. Zeolite formation from coal fly ash and heavy metal ion removal characteristics of thus-obtained zeolite X in multi-metal systems[J]. Journal of Environmental Management, 2009, 90(8): 2507-2514.

    [64] MOUTSATSOU A, STAMATAKIS E, HATZITZOTZIA K, et al. The utilization of Ca-rich and Ca-Si-rich fly ashes in zeolites production[J]. Fuel, 2006, 85(5/6): 657-663.

    [65] JORDENS J, GIELEN B, XIOURAS C, et al. Sonocrystallisation: observations, theories and guidelines[J]. Chemical Engineering and Processing-Process Intensification, 2019, 139: 130-154.

    [66] MENDOZA H R, JORDENS J, PEREIRA M V L, et al. Effects of ultrasonic irradiation on crystallization kinetics, morphological and structural properties of zeolite FAU[J]. Ultrasonics Sonochemistry, 2020, 64: 105010.

    [67] BOELS L, WAGTERVELD R M, MAYER M J, et al. Seeded calcite sonocrystallization[J]. Journal of Crystal Growth, 2010, 312(7): 961-966.

    [68] GUO Z, ZHANG M, LI H, et al. Effect of ultrasound on anti-solvent crystallization process[J]. Journal of Crystal Growth, 2005, 273(3/4): 555-563.

    [69] HORST C, GOGATE P R, PANDIT A B. Ultrasound reactors[M]//Modeling of Process Intensification. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2007: 193-277.

    [70] WANG B Y, WU J M, YUAN Z Y, et al. Synthesis of MCM-22 zeolite by an ultrasonic-assisted aging procedure[J]. Ultrasonics Sonochemistry, 2008, 15(4): 334-338.

    [71] BELVISO C, CAVALCANTE F, LETTINO A, et al. Effects of ultrasonic treatment on zeolite synthesized from coal fly ash[J]. Ultrasonics Sonochemistry, 2011, 18(2): 661-668.

    [72] EGEBLAD K, CHRISTENSEN C H, KUSTOVA M, et al. Templating mesoporous zeolites[J]. Chemistry of Materials, 2008, 20(3): 946-960.

    [73] BONACCORSI L, PROVERBIO E. Synthesis of thick zeolite 4A coatings on stainless steel[J]. Microporous and Mesoporous Materials, 2004, 74(1/2/3): 221-229.

    [74] LIU S Z, CAO X J, LI L S, et al. Preformed zeolite precursor route for synthesis of mesoporous X zeolite[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 318(1/2/3): 269-274.

    [75] AWALA H, GILSON J P, RETOUX R, et al. Template-free nanosized faujasite-type zeolites[J]. Nature Materials, 2015, 14(4): 447-451.

    YANG Ningwei, AN Liangcheng, LYU Junmin, LIU Suli, WANG Zheng, TUO Jie, GAO Xinhua, FAN Subing. Research Progress of Zeolite Na-X Synthesis from Minerals and Waste Residues[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(2): 401
    Download Citation