• Journal of Atmospheric and Environmental Optics
  • Vol. 15, Issue 6, 486 (2020)
Yukai TONG*, Teng FANG, Yaoyao LIU, Dongping ZHAO, and Anpei YE
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1673-6141.2020.06.008 Cite this Article
    TONG Yukai, FANG Teng, LIU Yaoyao, ZHAO Dongping, YE Anpei. Research on Hygroscopicity and Volatility of Single Aerosol Droplet[J]. Journal of Atmospheric and Environmental Optics, 2020, 15(6): 486 Copy Citation Text show less
    References

    [1] Ovadnevaite J, Zuend A, Laaksonen A, et al. Surface tension prevails over solute effect in organic-influenced cloud droplet activation[J]. Nature, 2017, 546: 637-641.

    [2] Estillore A D, Hettiyadura A P S, Qin Z, et al. Water uptake and hygroscopic growth of organosulfate aerosol[J]. Environmental Science & Technology, 2016, 50(8): 4259-4268.

    [3] Wang Y, Ma J B, Zhou Q, et al. Hygroscopicity of mixed glycerol/Mg(NO 3) 2 /water droplets affected by the interaction between magnesium ions and glycerol molecules[J]. Journal of Physical Chemistry B, 2015, 119(17): 5558-5566.

    [4] Lee H D, Estillore A D, Morris H S, et al. Direct surface tension measurements of individual sub-micrometer particles using atomic force microscopy[J]. Journal of Physical Chemistry A, 2017, 121(43): 8296-8305.

    [5] Leng C B, Pang S F, Zhang Y, et al. Vacuum FTIR observation on the dynamic hygroscopicity of aerosols under pulsed relative humidity[J]. Environmental Science & Technology, 2015, 49(15): 9107-9115.

    [6] Preston T C, Davies J F, Wilson K R. The frequency-dependent response of single aerosol particles to vapour phase oscillations and its application in measuring diffusion coefficients[J]. Physical Chemistry Chemical Physics, 2017, 19: 3922-3931.

    [7] Cai C, Stewart D J, Reid J P, et al. Organic component vapor pressures and hygroscopicities of aqueous aerosol measured by optical tweezers[J]. Journal of Physical Chemistry A, 2015, 119(4): 704-718.

    [8] Cai C, Stewart D J, Preston T C, et al. A new approach to determine vapour pressures and hygroscopicities of aqueous aerosols containing semi-volatile organic compounds[J]. Physical Chemistry Chemical Physics, 2014, 16: 3162-3172.

    [9] Moridnejad A, Preston T C, Krieger U K. Tracking water sorption in glassy aerosol particles using morphology-dependent resonances[J]. Journal of Physical Chemistry A, 2017, 121(42): 8176-8184.

    [10] Nadler K A, Kim P, Huang D L, et al. Water diffusion measurements of single charged aerosols using H 2 O/D 2 O isotope exchange and Raman spectroscopy in an electrodynamic balance[J]. Physical Chemistry Chemical Physics, 2019, 21: 15062-15071.

    [11] Davies J F, Wilson K R. Raman spectroscopy of isotopic water diffusion in ultraviscous, glassy, and gel states in aerosol by use of optical tweezers[J]. Analytical Chemistry, 2016, 88(4): 2361-2366.

    [12] Moridnejad A, Preston T C. Models of isotopic water diffusion in spherical aerosol particles[J]. Journal of Physical Chemistry A, 2016, 120(49): 9759-9766.

    [13] Price H C, Murray B J, Mattsson J, et al. Quantifying water diffusion in high-viscosity and glassy aqueous solutions using a Raman isotope tracer method[J]. Atmospheric Chemistry and Physics, 2014, 14: 3817-3830.

    [14] Thurn R, Kiefer W. Structural resonances observed in the Raman spectra of optically levitated liquid droplets[J]. Applied Optics, 1985, 24(10): 1515-1519.

    [15] Thurn R, Kiefer W. Observations of structural resonances in the Raman spectra of optically levitated dielectric microspheres[J]. Journal of Raman Spectroscopy, 1984, 15(6): 411-413.

    [16] Reid J P, Meresman H, Mitchem L, et al. Spectroscopic studies of the size and composition of single aerosol droplets[J]. International Reviews in Physical Chemistry, 2006, 26(1): 139-192.

    [17] Gatherer R D B, Sayer R M, Reid J P. An optical method for determining size distributions of water droplets[J]. Chemical Physics Letters, 2002, 366(1-2): 34-41.

    [18] Aristov Y I, Glaznev I S, Freni A, et al. Kinetics of water sorption on SWS-1L (calcium chloride confined to mesoporous silica gel): Influence of grain size and temperature[J]. Chemical Engineering Science, 2006, 61(5): 1453-1458.

    [19] Rickards A M J, Song Y C, Miles R E H, et al. Variabilities and uncertainties in characterising water transport kinetics in glassy and ultraviscous aerosol[J]. Physical Chemistry Chemical Physics, 2015, 17(15): 10059-10073.

    [20] Ediger M D. Spatially heterogeneous dynamics in supercooled liquids[J]. Annual Review of Physical Chemistry, 2000, 51: 99-128.

    [21] Bones D L, Reid J P, Lienhard D M, et al. Comparing the mechanism of water condensation and evaporation in glassy aerosol[J]. Proceedings of the National Academy of Sciences, 2012, 109(29): 11613-11618.

    [22] Zobrist B, Soonsin V, Luo B P, et al. Ultra-slow water diffusion in aqueous sucrose glasses[J]. Physical Chemistry Chemical Physics, 2011, 13(8): 3514-3526.

    [23] Zobrist B, Marcolli C, Pedernera D A, et al. Do atmospheric aerosols form glasses?[J]. Atmospheric Chemistry and Physics, 2008, 8(17): 5221-5244.

    [24] Bastelberger S, Krieger U K, Luo B P, et al. Diffusivity measurements of volatile organics in levitated viscous aerosol particles[J]. Atmospheric Chemistry and Physics, 2017, 17: 8453-8471.

    [25] Shi X M, Wu F M, Jing B, et al. Hygroscopicity of internally mixed particles composed of (NH 4) 2 SO 4 and citric acid under pulsed RH change[J]. Chemosphere, 2017, 188: 532-540.

    TONG Yukai, FANG Teng, LIU Yaoyao, ZHAO Dongping, YE Anpei. Research on Hygroscopicity and Volatility of Single Aerosol Droplet[J]. Journal of Atmospheric and Environmental Optics, 2020, 15(6): 486
    Download Citation